Documentation Verification Report

FundamentalCone

πŸ“ Source: Mathlib/NumberTheory/NumberField/CanonicalEmbedding/FundamentalCone.lean

Statistics

MetricCount
DefinitionsfundamentalCone, idealSet, idealSetEquiv, idealSetEquivNorm, idealSetMap, instMulActionSubtypeUnitsRingOfIntegersMemSubgroupTorsionElemMixedSpaceIntegerSet, intNorm, integerSet, integerSetEquiv, integerSetEquivNorm, integerSetQuotEquivAssociates, integerSetToAssociates, integerSetTorsionSMul, preimageOfMemIntegerSet, quotIntNorm, instMulActionUnitsRingOfIntegersMixedSpace, instSMulZeroClassUnitsRingOfIntegersMixedSpace, logMap, unitSMul
19
Theoremscard_isPrincipal_dvd_norm_le, card_isPrincipal_norm_eq_mul_torsion, existsUnique_preimage_of_mem_integerSet, exists_unitSMul_mem_integerSet, exists_unit_smul_mem, idealSetEquiv_apply, idealSetEquiv_symm_apply, idealSetMap_apply, intNorm_coe, intNorm_idealSetEquiv_apply, integerSetEquivNorm_apply_fst, integerSetEquiv_apply_fst, integerSetQuotEquivAssociates_apply, integerSetToAssociates_apply, integerSetToAssociates_eq_iff, integerSetToAssociates_surjective, integerSetTorsionSMul_smul_coe, integerSetTorsionSMul_stabilizer, mem_idealSet, mem_integerSet, mem_of_normAtPlace_eq, mixedEmbedding_preimageOfMemIntegerSet, ne_zero_of_mem_integerSet, normAtPlace_pos_of_mem, norm_pos_of_mem, preimageOfMemIntegerSet_mixedEmbedding, preimage_of_IdealSetMap, quotIntNorm_apply, smul_mem_iff_mem, smul_mem_of_mem, torsion_smul_mem_of_mem, torsion_unitSMul_mem_integerSet, unit_smul_mem_iff_mem_torsion, logMap_apply, logMap_apply_of_norm_eq_one, logMap_apply_of_norm_one, logMap_eq_logEmbedding, logMap_eq_of_normAtPlace_eq, logMap_mul, logMap_one, logMap_real, logMap_real_smul, logMap_torsion_smul, logMap_unit_smul, logMap_zero, measurableSet_fundamentalCone, norm_unit_smul, unitSMul_smul, unit_smul_eq_iff_mul_eq, unit_smul_eq_zero
50
Total69

NumberField.mixedEmbedding

Definitions

NameCategoryTheorems
fundamentalCone πŸ“–CompOp
7 mathmath: fundamentalCone.mem_normLeOne, fundamentalCone.exists_unit_smul_mem, fundamentalCone.normAtAllPlaces_mem_fundamentalCone_iff, measurableSet_fundamentalCone, fundamentalCone.mem_idealSet, fundamentalCone.smul_mem_iff_mem, fundamentalCone.mem_integerSet
instMulActionUnitsRingOfIntegersMixedSpace πŸ“–CompOpβ€”
instSMulZeroClassUnitsRingOfIntegersMixedSpace πŸ“–CompOpβ€”
logMap πŸ“–CompOp
17 mathmath: logMap_one, fundamentalCone.logMap_expMapBasis, logMap_real_smul, logMap_eq_of_normAtPlace_eq, logMap_eq_logEmbedding, logMap_apply_of_norm_eq_one, logMap_unit_smul, fundamentalCone.logMap_expMap, logMap_apply, logMap_apply_of_norm_one, logMap_real, logMap_torsion_smul, fundamentalCone.realSpaceToLogSpace_expMap_symm, logMap_zero, logMap_mul, fundamentalCone.logMap_normAtAllPlaces, fundamentalCone.normAtAllPlaces_normLeOne
unitSMul πŸ“–CompOp
12 mathmath: norm_unit_smul, fundamentalCone.torsion_unitSMul_mem_integerSet, fundamentalCone.torsion_smul_mem_of_mem, fundamentalCone.integerSetTorsionSMul_smul_coe, unit_smul_eq_iff_mul_eq, fundamentalCone.unit_smul_mem_iff_mem_torsion, fundamentalCone.exists_unitSMul_mem_integerSet, fundamentalCone.exists_unit_smul_mem, logMap_unit_smul, unitSMul_smul, unit_smul_eq_zero, logMap_torsion_smul

Theorems

NameKindAssumesProvesValidatesDepends On
logMap_apply πŸ“–mathematicalβ€”logMap
Real
Real.instMul
Real.instNatCast
NumberField.InfinitePlace.mult
NumberField.InfinitePlace
NumberField.Units.dirichletUnitTheorem.wβ‚€
Real.instSub
Real.log
DFunLike.coe
MonoidWithZeroHom
mixedSpace
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
normAtPlace
norm
Real.instInv
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
β€”β€”
logMap_apply_of_norm_eq_one πŸ“–mathematicalDFunLike.coe
MonoidWithZeroHom
mixedSpace
Real
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
norm
Real.instOne
logMap
Real.instMul
Real.instNatCast
NumberField.InfinitePlace.mult
NumberField.Units.dirichletUnitTheorem.wβ‚€
Real.log
normAtPlace
β€”NumberField.to_charZero
logMap_apply
Real.log_one
MulZeroClass.zero_mul
sub_zero
logMap_apply_of_norm_one πŸ“–mathematicalDFunLike.coe
MonoidWithZeroHom
mixedSpace
Real
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
norm
Real.instOne
logMap
Real.instMul
Real.instNatCast
NumberField.InfinitePlace.mult
NumberField.Units.dirichletUnitTheorem.wβ‚€
Real.log
normAtPlace
β€”logMap_apply_of_norm_eq_one
logMap_eq_logEmbedding πŸ“–mathematicalβ€”logMap
DFunLike.coe
RingHom
mixedSpace
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidHom
Additive
Units
NumberField.Units.dirichletUnitTheorem.logSpace
AddZeroClass.toAddZero
Additive.addZeroClass
Units.instMulOneClass
Pi.addZeroClass
NumberField.Units.dirichletUnitTheorem.wβ‚€
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
NumberField.Units.logEmbedding
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”NumberField.to_charZero
normAtPlace_apply
norm_eq_norm
NumberField.Units.norm
Rat.cast_one
Real.log_one
MulZeroClass.zero_mul
sub_zero
logMap_eq_of_normAtPlace_eq πŸ“–mathematicalDFunLike.coe
MonoidWithZeroHom
mixedSpace
Real
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
normAtPlace
logMapβ€”NumberField.to_charZero
norm_eq_of_normAtPlace_eq
logMap_mul πŸ“–mathematicalβ€”logMap
mixedSpace
Prod.instMul
Pi.instMul
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instMul
NumberField.InfinitePlace.IsComplex
Complex
Complex.instMul
NumberField.Units.dirichletUnitTheorem.logSpace
Pi.instAdd
NumberField.Units.dirichletUnitTheorem.wβ‚€
Real.instAdd
β€”NumberField.to_charZero
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Real.log_mul
norm_ne_zero_iff
add_mul
Distrib.rightDistribClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
logMap_one πŸ“–mathematicalβ€”logMap
mixedSpace
Prod.instOne
Pi.instOne
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instOne
NumberField.InfinitePlace.IsComplex
Complex
Complex.instOne
NumberField.Units.dirichletUnitTheorem.logSpace
Pi.instZero
NumberField.Units.dirichletUnitTheorem.wβ‚€
Real.instZero
β€”NumberField.to_charZero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Real.log_one
MulZeroClass.zero_mul
sub_self
MulZeroClass.mul_zero
logMap_real πŸ“–mathematicalβ€”logMap
Real
mixedSpace
Prod.instSMul
Function.hasSMul
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
NumberField.InfinitePlace.IsComplex
Complex
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Real.normedField
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
Complex.instRCLike
Prod.instOne
Pi.instOne
Real.instOne
Complex.instOne
NumberField.Units.dirichletUnitTheorem.logSpace
Pi.instZero
NumberField.Units.dirichletUnitTheorem.wβ‚€
Real.instZero
β€”NumberField.to_charZero
logMap_apply
normAtPlace_smul
norm_smul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
mul_one
Real.log_pow
mul_comm
mul_assoc
mul_inv_cancelβ‚€
Nat.cast_ne_zero
RCLike.charZero_rclike
LT.lt.ne'
Module.finrank_pos
commRing_strongRankCondition
Rat.nontrivial
NumberField.to_finiteDimensional
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
sub_self
MulZeroClass.mul_zero
Pi.zero_apply
logMap_real_smul πŸ“–mathematicalβ€”logMap
Real
mixedSpace
Prod.instSMul
Function.hasSMul
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
NumberField.InfinitePlace.IsComplex
Complex
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Real.normedField
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
Complex.instRCLike
β€”NumberField.to_charZero
norm_smul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
mul_one
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
abs_ne_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
smul_one_mul
IsScalarTower.right
logMap_mul
logMap_real
zero_add
logMap_torsion_smul πŸ“–mathematicalUnits
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
logMap
mixedSpace
unitSMul
β€”NumberField.to_charZero
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
norm_eq_norm
NumberField.Units.norm
Rat.cast_one
one_mul
normAtPlace_apply
NumberField.Units.mem_torsion
logMap_unit_smul πŸ“–mathematicalβ€”logMap
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
mixedSpace
unitSMul
NumberField.Units.dirichletUnitTheorem.logSpace
Pi.instAdd
NumberField.InfinitePlace
NumberField.Units.dirichletUnitTheorem.wβ‚€
Real
Real.instAdd
DFunLike.coe
AddMonoidHom
Additive
AddZeroClass.toAddZero
Additive.addZeroClass
Units.instMulOneClass
Pi.addZeroClass
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
NumberField.Units.logEmbedding
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”unitSMul_smul
logMap_mul
norm_unit
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Nat.cast_zero
logMap_eq_logEmbedding
logMap_zero πŸ“–mathematicalβ€”logMap
mixedSpace
Prod.instZero
Pi.instZero
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instZero
NumberField.InfinitePlace.IsComplex
Complex
Complex.instZero
NumberField.Units.dirichletUnitTheorem.logSpace
NumberField.Units.dirichletUnitTheorem.wβ‚€
β€”NumberField.to_charZero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Real.log_zero
MulZeroClass.zero_mul
sub_self
MulZeroClass.mul_zero
measurableSet_fundamentalCone πŸ“–mathematicalβ€”MeasurableSet
mixedSpace
Prod.instMeasurableSpace
MeasurableSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.measurableSpace
NumberField.InfinitePlace.IsComplex
Complex
Complex.measurableSpace
fundamentalCone
β€”MeasurableSet.diff
Real.instIsStrictOrderedRing
instHasSolidNormReal
NumberField.Units.instDiscrete_unitLattice
NumberField.Units.instZLattice_unitLattice
MeasurableSet.preimage
NumberField.to_charZero
ZSpan.fundamentalDomain_measurableSet
Pi.opensMeasurableSpace
Subtype.countable
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
measurable_pi_iff
Measurable.mul
ContinuousMul.measurableMulβ‚‚
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
measurable_const
Measurable.sub
ContinuousSub.measurableSubβ‚‚
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
Measurable.log
Continuous.measurable
Prod.opensMeasurableSpace
secondCountable_of_proper
Complex.instProperSpace
Complex.borelSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
continuous_normAtPlace
continuous_norm
measurableSet_eq_fun
instMeasurableEqOfSecondCountableTopologyOfT2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
norm_unit_smul πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
mixedSpace
Real
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
norm
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
unitSMul
β€”unitSMul_smul
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
norm_unit
one_mul
unitSMul_smul πŸ“–mathematicalβ€”Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
mixedSpace
unitSMul
Prod.instMul
Pi.instMul
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instMul
NumberField.InfinitePlace.IsComplex
Complex
Complex.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
Real.semiring
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Units.val
β€”β€”
unit_smul_eq_iff_mul_eq πŸ“–mathematicalβ€”Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
mixedSpace
unitSMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
NumberField.RingOfIntegers.val
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.val
β€”unitSMul_smul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
NumberField.mixedEmbedding_injective
NumberField.RingOfIntegers.coe_eq_algebraMap
NumberField.RingOfIntegers.ext_iff
unit_smul_eq_zero πŸ“–mathematicalβ€”Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
mixedSpace
unitSMul
Prod.instZero
Pi.instZero
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instZero
NumberField.InfinitePlace.IsComplex
Complex
Complex.instZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
exists_normAtPlace_ne_zero_iff
unitSMul_smul
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
normAtPlace_apply
Real.instNontrivial
NumberField.InfinitePlace.instMonoidWithZeroHomClassReal
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
NumberField.RingOfIntegers.instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
NumberField.RingOfIntegers.instIsTorsionFree_2
NumberField.RingOfIntegers.instNontrivial
smul_zero

NumberField.mixedEmbedding.fundamentalCone

Definitions

NameCategoryTheorems
idealSet πŸ“–CompOp
6 mathmath: card_isPrincipal_dvd_norm_le, idealSetMap_apply, idealSetEquiv_symm_apply, mem_idealSet, idealSetEquiv_apply, intNorm_idealSetEquiv_apply
idealSetEquiv πŸ“–CompOp
3 mathmath: idealSetEquiv_symm_apply, idealSetEquiv_apply, intNorm_idealSetEquiv_apply
idealSetEquivNorm πŸ“–CompOpβ€”
idealSetMap πŸ“–CompOp
2 mathmath: idealSetMap_apply, preimage_of_IdealSetMap
instMulActionSubtypeUnitsRingOfIntegersMemSubgroupTorsionElemMixedSpaceIntegerSet πŸ“–CompOp
3 mathmath: integerSetQuotEquivAssociates_apply, integerSetTorsionSMul_stabilizer, quotIntNorm_apply
intNorm πŸ“–CompOp
3 mathmath: quotIntNorm_apply, intNorm_coe, intNorm_idealSetEquiv_apply
integerSet πŸ“–CompOp
17 mathmath: integerSetEquivNorm_apply_fst, card_isPrincipal_norm_eq_mul_torsion, integerSetQuotEquivAssociates_apply, integerSetEquiv_apply_fst, integerSetTorsionSMul_smul_coe, integerSetTorsionSMul_stabilizer, exists_unitSMul_mem_integerSet, quotIntNorm_apply, idealSetMap_apply, mixedEmbedding_preimageOfMemIntegerSet, integerSetToAssociates_eq_iff, idealSetEquiv_symm_apply, intNorm_coe, integerSetToAssociates_surjective, idealSetEquiv_apply, mem_integerSet, intNorm_idealSetEquiv_apply
integerSetEquiv πŸ“–CompOp
1 mathmath: integerSetEquiv_apply_fst
integerSetEquivNorm πŸ“–CompOp
1 mathmath: integerSetEquivNorm_apply_fst
integerSetQuotEquivAssociates πŸ“–CompOp
1 mathmath: integerSetQuotEquivAssociates_apply
integerSetToAssociates πŸ“–CompOp
3 mathmath: integerSetToAssociates_apply, integerSetToAssociates_eq_iff, integerSetToAssociates_surjective
integerSetTorsionSMul πŸ“–CompOp
2 mathmath: integerSetTorsionSMul_smul_coe, integerSetToAssociates_eq_iff
preimageOfMemIntegerSet πŸ“–CompOp
10 mathmath: preimageOfMemIntegerSet_mixedEmbedding, integerSetEquivNorm_apply_fst, integerSetQuotEquivAssociates_apply, integerSetEquiv_apply_fst, integerSetToAssociates_apply, mixedEmbedding_preimageOfMemIntegerSet, idealSetEquiv_symm_apply, preimage_of_IdealSetMap, idealSetEquiv_apply, intNorm_idealSetEquiv_apply
quotIntNorm πŸ“–CompOp
1 mathmath: quotIntNorm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
card_isPrincipal_dvd_norm_le πŸ“–mathematicalβ€”Nat.card
Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Submodule.instNonUnitalSemiring
Semiring.toModule
IsScalarTower.right
Submodule.IsPrincipal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Real
Real.instLE
Real.instNatCast
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
NumberField.Units.torsionOrder
Set.Elem
NumberField.mixedEmbedding.mixedSpace
idealSet
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
NumberField.mixedEmbedding.norm
Set
Set.instMembership
β€”IsScalarTower.right
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
le_or_gt
Real.instIsStrictOrderedRing
Nat.le_floor_iff
NumberField.Units.torsionOrder.eq_1
Nat.card_eq_fintype_card
Nat.card_prod
Nat.card_congr
Finset.mem_Iic
Subtype.prop
RCLike.charZero_rclike
lt_iff_not_ge
lt_of_lt_of_le
Nat.cast_nonneg
Real.instIsOrderedRing
NumberField.mixedEmbedding.norm_nonneg
Nat.card_of_isEmpty
Subtype.isEmpty_false
MulZeroClass.zero_mul
card_isPrincipal_norm_eq_mul_torsion πŸ“–mathematicalβ€”Nat.card
Set.Elem
Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
setOf
Submodule.IsPrincipal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
NumberField.Units.torsionOrder
NumberField.mixedEmbedding.mixedSpace
integerSet
Real
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
NumberField.mixedEmbedding.norm
Set
Set.instMembership
Real.instNatCast
β€”NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
NumberField.Units.torsionOrder.eq_1
Nat.card_eq_fintype_card
Nat.card_prod
Nat.card_congr
existsUnique_preimage_of_mem_integerSet πŸ“–mathematicalNumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
integerSet
ExistsUnique
NumberField.RingOfIntegers
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
NumberField.RingOfIntegers.val
β€”mem_integerSet
Function.Injective.existsUnique_of_mem_range
NumberField.mixedEmbedding_injective
NumberField.RingOfIntegers.coe_injective
Set.mem_range_self
exists_unitSMul_mem_integerSet πŸ“–mathematicalNumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
Set.image
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
Set.range
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
integerSet
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NumberField.mixedEmbedding.unitSMul
β€”Iff.not
NumberField.mixedEmbedding.norm_eq_zero_iff'
Set.mem_range_of_mem_image
exists_unit_smul_mem
mem_integerSet
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
exists_unit_smul_mem πŸ“–mathematicalβ€”NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
NumberField.mixedEmbedding.fundamentalCone
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
NumberField.mixedEmbedding.unitSMul
β€”Real.instIsStrictOrderedRing
instHasSolidNormReal
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
pi_properSpace
instProperSpaceReal
NumberField.Units.instDiscrete_unitLattice
NumberField.Units.instZLattice_unitLattice
ZSpan.exist_unique_vadd_mem_fundamentalDomain
Module.Basis.ofZLatticeBasis_span
Set.mem_preimage
NumberField.mixedEmbedding.logMap_unit_smul
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
NumberField.to_charZero
NumberField.mixedEmbedding.norm_eq_norm
NumberField.Units.norm
Rat.cast_one
one_mul
idealSetEquiv_apply πŸ“–mathematicalβ€”NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
integerSet
Set.Elem
setOf
NumberField.RingOfIntegers
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
preimageOfMemIntegerSet
DFunLike.coe
Equiv
idealSet
EquivLike.toFunLike
Equiv.instEquivLike
idealSetEquiv
β€”β€”
idealSetEquiv_symm_apply πŸ“–mathematicalβ€”NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
idealSet
DFunLike.coe
Equiv
Set.Elem
integerSet
setOf
NumberField.RingOfIntegers
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
preimageOfMemIntegerSet
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
idealSetEquiv
β€”idealSetEquiv_apply
Equiv.apply_symm_apply
idealSetMap_apply πŸ“–mathematicalβ€”NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
integerSet
idealSetMap
idealSet
β€”β€”
intNorm_coe πŸ“–mathematicalβ€”Real
Real.instNatCast
intNorm
DFunLike.coe
MonoidWithZeroHom
NumberField.mixedEmbedding.mixedSpace
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
NumberField.mixedEmbedding.norm
Set
Set.instMembership
integerSet
β€”intNorm.eq_1
Nat.cast_natAbs
Rat.cast_intCast
Int.cast_abs
Rat.instIsStrictOrderedRing
NumberField.to_charZero
Algebra.coe_norm_int
NumberField.mixedEmbedding.norm_eq_norm
mixedEmbedding_preimageOfMemIntegerSet
intNorm_idealSetEquiv_apply πŸ“–mathematicalβ€”Real
Real.instNatCast
intNorm
Set.Elem
NumberField.mixedEmbedding.mixedSpace
integerSet
Set
Set.instMembership
setOf
NumberField.RingOfIntegers
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
preimageOfMemIntegerSet
DFunLike.coe
Equiv
idealSet
EquivLike.toFunLike
Equiv.instEquivLike
idealSetEquiv
MonoidWithZeroHom
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
NumberField.mixedEmbedding.norm
β€”intNorm_coe
idealSetEquiv_apply
integerSetEquivNorm_apply_fst πŸ“–mathematicalβ€”Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Submodule.IsPrincipal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Units
MonoidWithZero.toMonoid
Subgroup
Units.instGroup
Subgroup.instSetLike
NumberField.Units.torsion
Equiv
Set.Elem
NumberField.mixedEmbedding.mixedSpace
integerSet
Real
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
NumberField.mixedEmbedding.norm
Set
Set.instMembership
Real.instNatCast
EquivLike.toFunLike
Equiv.instEquivLike
integerSetEquivNorm
Ideal.span
Set.instSingletonSet
preimageOfMemIntegerSet
β€”NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
integerSetEquiv_apply_fst πŸ“–mathematicalβ€”Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Submodule.IsPrincipal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Units
MonoidWithZero.toMonoid
Subgroup
Units.instGroup
Subgroup.instSetLike
NumberField.Units.torsion
DFunLike.coe
Equiv
Set.Elem
NumberField.mixedEmbedding.mixedSpace
integerSet
EquivLike.toFunLike
Equiv.instEquivLike
integerSetEquiv
Ideal.span
Set
Set.instSingletonSet
preimageOfMemIntegerSet
β€”β€”
integerSetQuotEquivAssociates_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set.Elem
NumberField.mixedEmbedding.mixedSpace
integerSet
MulAction.orbitRel
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Subgroup.toGroup
instMulActionSubtypeUnitsRingOfIntegersMemSubgroupTorsionElemMixedSpaceIntegerSet
Associates
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Submonoid.instSetLike
nonZeroDivisors
Submonoid.toMonoid
EquivLike.toFunLike
Equiv.instEquivLike
integerSetQuotEquivAssociates
Associated.setoid
preimageOfMemIntegerSet
β€”β€”
integerSetToAssociates_apply πŸ“–mathematicalβ€”integerSetToAssociates
NumberField.RingOfIntegers
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Associated.setoid
Submonoid.toMonoid
MonoidWithZero.toMonoid
preimageOfMemIntegerSet
β€”β€”
integerSetToAssociates_eq_iff πŸ“–mathematicalβ€”integerSetToAssociates
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Set.Elem
NumberField.mixedEmbedding.mixedSpace
integerSet
integerSetTorsionSMul
β€”SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
mul_comm
NumberField.mixedEmbedding_injective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mixedEmbedding_preimageOfMemIntegerSet
unit_smul_mem_iff_mem_torsion
Subtype.prop
integerSetToAssociates_surjective πŸ“–mathematicalβ€”Set.Elem
NumberField.mixedEmbedding.mixedSpace
integerSet
Associates
NumberField.RingOfIntegers
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Submonoid.toMonoid
MonoidWithZero.toMonoid
integerSetToAssociates
β€”exists_unitSMul_mem_integerSet
map_ne_zero
NumberField.mixedEmbedding.instNontrivialMixedSpace
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
NumberField.RingOfIntegers.coe_ne_zero_iff
nonZeroDivisors.coe_ne_zero
NumberField.RingOfIntegers.instNontrivial
Set.mem_range_self
NumberField.mixedEmbedding_injective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mixedEmbedding_preimageOfMemIntegerSet
mul_comm
map_inv
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
Units.mul_inv_cancel_right
integerSetTorsionSMul_smul_coe πŸ“–mathematicalβ€”NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
integerSet
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Set.Elem
integerSetTorsionSMul
NumberField.mixedEmbedding.unitSMul
β€”β€”
integerSetTorsionSMul_stabilizer πŸ“–mathematicalβ€”MulAction.stabilizer
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Set.Elem
NumberField.mixedEmbedding.mixedSpace
integerSet
Subgroup.toGroup
instMulActionSubtypeUnitsRingOfIntegersMemSubgroupTorsionElemMixedSpaceIntegerSet
Bot.bot
Subgroup.instBot
β€”Subgroup.eq_bot_iff_forall
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
OneMemClass.coe_eq_one
Units.val_eq_one
mul_eq_rightβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
NumberField.RingOfIntegers.instIsDomain
nonZeroDivisors.coe_ne_zero
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.ext_iff
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
NumberField.mixedEmbedding_injective
mixedEmbedding_preimageOfMemIntegerSet
NumberField.mixedEmbedding.unitSMul_smul
integerSetTorsionSMul_smul_coe
MulAction.mem_stabilizer_iff
mem_idealSet πŸ“–mathematicalβ€”NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
idealSet
NumberField.mixedEmbedding.fundamentalCone
NumberField.RingOfIntegers
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
DFunLike.coe
RingHom
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
NumberField.RingOfIntegers.val
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsDomain
RingHomSurjective.ids
mem_integerSet πŸ“–mathematicalβ€”NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
integerSet
NumberField.mixedEmbedding.fundamentalCone
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
NumberField.RingOfIntegers.val
β€”β€”
mem_of_normAtPlace_eq πŸ“–β€”NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
NumberField.mixedEmbedding.fundamentalCone
DFunLike.coe
MonoidWithZeroHom
Real
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
NumberField.mixedEmbedding.normAtPlace
β€”β€”Real.instIsStrictOrderedRing
instHasSolidNormReal
NumberField.Units.instDiscrete_unitLattice
NumberField.Units.instZLattice_unitLattice
Set.mem_preimage
NumberField.mixedEmbedding.logMap_eq_of_normAtPlace_eq
NumberField.mixedEmbedding.norm_eq_of_normAtPlace_eq
mixedEmbedding_preimageOfMemIntegerSet πŸ“–mathematicalβ€”DFunLike.coe
RingHom
NumberField.mixedEmbedding.mixedSpace
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
NumberField.RingOfIntegers.val
NumberField.RingOfIntegers
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
preimageOfMemIntegerSet
Set
Set.instMembership
integerSet
β€”preimageOfMemIntegerSet.eq_1
mem_integerSet
Subtype.prop
ne_zero_of_mem_integerSet πŸ“–β€”β€”β€”β€”Real.instIsStrictOrderedRing
instHasSolidNormReal
NumberField.Units.instDiscrete_unitLattice
NumberField.Units.instZLattice_unitLattice
Subtype.prop
ZeroHom.map_zero'
normAtPlace_pos_of_mem πŸ“–mathematicalNumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
NumberField.mixedEmbedding.fundamentalCone
Real
Real.instLT
Real.instZero
DFunLike.coe
MonoidWithZeroHom
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
NumberField.mixedEmbedding.normAtPlace
β€”lt_of_le_of_ne
NumberField.mixedEmbedding.normAtPlace_nonneg
NumberField.mixedEmbedding.norm_ne_zero_iff
LT.lt.ne'
norm_pos_of_mem
norm_pos_of_mem πŸ“–mathematicalNumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
NumberField.mixedEmbedding.fundamentalCone
Real
Real.instLT
Real.instZero
DFunLike.coe
MonoidWithZeroHom
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
NumberField.mixedEmbedding.norm
β€”lt_of_le_of_ne
NumberField.mixedEmbedding.norm_nonneg
Real.instIsStrictOrderedRing
instHasSolidNormReal
NumberField.Units.instDiscrete_unitLattice
NumberField.Units.instZLattice_unitLattice
preimageOfMemIntegerSet_mixedEmbedding πŸ“–mathematicalNumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
integerSet
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Prod.instNonAssocSemiring
Pi.nonAssocSemiring
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
RingHom.instFunLike
NumberField.mixedEmbedding
NumberField.RingOfIntegers.val
NumberField.RingOfIntegers
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
preimageOfMemIntegerSet
β€”NumberField.mixedEmbedding_injective
mixedEmbedding_preimageOfMemIntegerSet
preimage_of_IdealSetMap πŸ“–mathematicalβ€”NumberField.RingOfIntegers
Set
Set.instMembership
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
preimageOfMemIntegerSet
idealSetMap
β€”mem_idealSet
Subtype.prop
preimageOfMemIntegerSet_mixedEmbedding
quotIntNorm_apply πŸ“–mathematicalβ€”quotIntNorm
Set.Elem
NumberField.mixedEmbedding.mixedSpace
integerSet
MulAction.orbitRel
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
Subgroup.toGroup
instMulActionSubtypeUnitsRingOfIntegersMemSubgroupTorsionElemMixedSpaceIntegerSet
intNorm
β€”β€”
smul_mem_iff_mem πŸ“–mathematicalβ€”NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
NumberField.mixedEmbedding.fundamentalCone
Real
Prod.instSMul
Function.hasSMul
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
NumberField.InfinitePlace.IsComplex
Complex
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Real.normedField
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
Complex.instRCLike
β€”eq_inv_smul_iffβ‚€
smul_mem_of_mem
inv_ne_zero
smul_mem_of_mem πŸ“–mathematicalNumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
NumberField.mixedEmbedding.fundamentalCone
Real
Prod.instSMul
Function.hasSMul
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
NumberField.InfinitePlace.IsComplex
Complex
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Real.normedField
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
Complex.instRCLike
β€”Real.instIsStrictOrderedRing
instHasSolidNormReal
NumberField.Units.instDiscrete_unitLattice
NumberField.Units.instZLattice_unitLattice
Set.mem_preimage
NumberField.mixedEmbedding.logMap_real_smul
Set.mem_setOf_eq
NumberField.to_charZero
NumberField.mixedEmbedding.norm_smul
mul_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
pow_ne_zero
isReduced_of_noZeroDivisors
abs_ne_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
torsion_smul_mem_of_mem πŸ“–mathematicalNumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
NumberField.mixedEmbedding.fundamentalCone
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
NumberField.mixedEmbedding.unitSMulβ€”Real.instIsStrictOrderedRing
instHasSolidNormReal
NumberField.Units.instDiscrete_unitLattice
NumberField.Units.instZLattice_unitLattice
Set.mem_preimage
NumberField.mixedEmbedding.logMap_torsion_smul
Set.mem_setOf_eq
NumberField.mixedEmbedding.unitSMul_smul
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
NumberField.mixedEmbedding.norm_unit
one_mul
torsion_unitSMul_mem_integerSet πŸ“–mathematicalUnits
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
NumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
integerSet
NumberField.mixedEmbedding.unitSMulβ€”mem_integerSet
torsion_smul_mem_of_mem
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
unit_smul_mem_iff_mem_torsion πŸ“–mathematicalNumberField.mixedEmbedding.mixedSpace
Set
Set.instMembership
NumberField.mixedEmbedding.fundamentalCone
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
NumberField.mixedEmbedding.unitSMul
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
β€”NumberField.Units.dirichletUnitTheorem.logEmbedding_eq_zero_iff
Real.instIsStrictOrderedRing
instHasSolidNormReal
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
pi_properSpace
instProperSpaceReal
NumberField.Units.instDiscrete_unitLattice
NumberField.Units.instZLattice_unitLattice
Module.Basis.ofZLatticeBasis_span
Submodule.zero_mem
ExistsUnique.unique
ZSpan.exist_unique_vadd_mem_fundamentalDomain
AddSubmonoid.mk_vadd
vadd_eq_add
NumberField.mixedEmbedding.logMap_unit_smul
zero_add
torsion_smul_mem_of_mem

---

← Back to Index