Documentation Verification Report

PolarCoord

πŸ“ Source: Mathlib/NumberTheory/NumberField/CanonicalEmbedding/PolarCoord.lean

Statistics

MetricCount
DefinitionsFDerivPolarCoordRealSymm, homeoRealMixedSpacePolarSpace, measurableEquivRealMixedSpacePolarSpace, mixedSpaceToRealMixedSpace, polarCoord, polarCoordReal, polarSpace, polarSpaceCoord, realMixedSpace
9
Theoremsdet_fderivPolarCoordRealSymm, hasFDerivAt_polarCoordReal_symm, homeoRealMixedSpacePolarSpace_apply, homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex, homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal, homeoRealMixedSpacePolarSpace_apply_snd, homeoRealMixedSpacePolarSpace_symm_apply, instIsAddHaarMeasureRealMixedSpaceVolume, integral_comp_polarCoordReal_symm, integral_comp_polarCoord_symm, integral_comp_polarSpaceCoord_symm, lintegral_comp_polarCoordReal_symm, lintegral_comp_polarCoord_symm, lintegral_comp_polarSpaceCoord_symm, measurable_polarCoordReal_symm, measurable_polarCoord_symm, measurable_polarSpaceCoord_symm, mixedSpaceToRealMixedSpace_apply, normAtComplexPlaces_polarSpaceCoord_symm, normAtPlace_polarCoord_symm_of_isComplex, normAtPlace_polarCoord_symm_of_isReal, polarCoordReal_apply, polarCoordReal_source, polarCoordReal_symm_target_ae_eq_univ, polarCoordReal_target, polarCoord_apply, polarCoord_source, polarCoord_symm_apply, polarCoord_symm_eq, polarCoord_target, polarCoord_target_eq_polarCoordReal_target, polarSpaceCoord_apply, polarSpaceCoord_source, polarSpaceCoord_symm_apply, polarSpaceCoord_target, polarSpaceCoord_target', volume_eq_two_pi_pow_mul_integral, volume_eq_two_pow_mul_two_pi_pow_mul_integral, volume_preserving_homeoRealMixedSpacePolarSpace, volume_preserving_mixedSpaceToRealMixedSpace_symm
40
Total49

NumberField.mixedEmbedding

Definitions

NameCategoryTheorems
FDerivPolarCoordRealSymm πŸ“–CompOp
2 mathmath: hasFDerivAt_polarCoordReal_symm, det_fderivPolarCoordRealSymm
homeoRealMixedSpacePolarSpace πŸ“–CompOp
8 mathmath: polarSpaceCoord_target, homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal, volume_preserving_homeoRealMixedSpacePolarSpace, homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex, homeoRealMixedSpacePolarSpace_apply, polarSpaceCoord_apply, homeoRealMixedSpacePolarSpace_apply_snd, homeoRealMixedSpacePolarSpace_symm_apply
measurableEquivRealMixedSpacePolarSpace πŸ“–CompOpβ€”
mixedSpaceToRealMixedSpace πŸ“–CompOp
3 mathmath: volume_preserving_mixedSpaceToRealMixedSpace_symm, mixedSpaceToRealMixedSpace_apply, polarCoord_symm_eq
polarCoord πŸ“–CompOp
11 mathmath: lintegral_comp_polarCoord_symm, normAtPlace_polarCoord_symm_of_isComplex, polarCoord_symm_apply, polarCoord_source, polarCoord_target, normAtPlace_polarCoord_symm_of_isReal, polarCoord_symm_eq, measurable_polarCoord_symm, polarCoord_apply, polarCoord_target_eq_polarCoordReal_target, integral_comp_polarCoord_symm
polarCoordReal πŸ“–CompOp
10 mathmath: measurable_polarCoordReal_symm, polarCoordReal_apply, polarCoordReal_source, polarCoord_symm_eq, lintegral_comp_polarCoordReal_symm, hasFDerivAt_polarCoordReal_symm, polarCoordReal_symm_target_ae_eq_univ, polarCoord_target_eq_polarCoordReal_target, polarCoordReal_target, integral_comp_polarCoordReal_symm
polarSpace πŸ“–CompOp
15 mathmath: integral_comp_polarSpaceCoord_symm, polarSpaceCoord_target, normAtComplexPlaces_polarSpaceCoord_symm, polarSpaceCoord_symm_apply, polarSpaceCoord_target', homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal, volume_preserving_homeoRealMixedSpacePolarSpace, homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex, homeoRealMixedSpacePolarSpace_apply, polarSpaceCoord_apply, homeoRealMixedSpacePolarSpace_apply_snd, polarSpaceCoord_source, homeoRealMixedSpacePolarSpace_symm_apply, measurable_polarSpaceCoord_symm, lintegral_comp_polarSpaceCoord_symm
polarSpaceCoord πŸ“–CompOp
9 mathmath: integral_comp_polarSpaceCoord_symm, polarSpaceCoord_target, normAtComplexPlaces_polarSpaceCoord_symm, polarSpaceCoord_symm_apply, polarSpaceCoord_target', polarSpaceCoord_apply, polarSpaceCoord_source, measurable_polarSpaceCoord_symm, lintegral_comp_polarSpaceCoord_symm
realMixedSpace πŸ“–CompOp
31 mathmath: lintegral_comp_polarCoord_symm, measurable_polarCoordReal_symm, normAtPlace_polarCoord_symm_of_isComplex, polarCoordReal_apply, polarSpaceCoord_target, polarCoordReal_source, polarCoord_symm_apply, volume_preserving_mixedSpaceToRealMixedSpace_symm, polarCoord_source, mixedSpaceToRealMixedSpace_apply, polarCoord_target, normAtPlace_polarCoord_symm_of_isReal, polarCoord_symm_eq, homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal, volume_preserving_homeoRealMixedSpacePolarSpace, homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex, lintegral_comp_polarCoordReal_symm, measurable_polarCoord_symm, polarCoord_apply, hasFDerivAt_polarCoordReal_symm, homeoRealMixedSpacePolarSpace_apply, polarCoordReal_symm_target_ae_eq_univ, polarSpaceCoord_apply, homeoRealMixedSpacePolarSpace_apply_snd, polarCoord_target_eq_polarCoordReal_target, instIsAddHaarMeasureRealMixedSpaceVolume, homeoRealMixedSpacePolarSpace_symm_apply, det_fderivPolarCoordRealSymm, polarCoordReal_target, integral_comp_polarCoord_symm, integral_comp_polarCoordReal_symm

Theorems

NameKindAssumesProvesValidatesDepends On
det_fderivPolarCoordRealSymm πŸ“–mathematicalβ€”ContinuousLinearMap.det
Real
Real.commRing
realMixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Prod.instAddCommGroup
Pi.addCommGroup
Real.instAddCommGroup
Prod.instModule
Real.semiring
Pi.addCommMonoid
Real.instAddCommMonoid
Prod.instAddCommMonoid
Pi.Function.module
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
FDerivPolarCoordRealSymm
Finset.prod
Real.instCommMonoid
Finset.univ
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
β€”ContinuousLinearMap.det.eq_1
LinearMap.det_prodMap
Module.Free.function
Subtype.finite
Finite.of_fintype
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
Real.instIsDomain
FiniteDimensional.rclike_to_real
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Module.Free.prod
FiniteDimensional.finiteDimensional_pi'
Module.Finite.prod
LinearMap.det_id
one_mul
det_fderivPiPolarCoordSymm
hasFDerivAt_polarCoordReal_symm πŸ“–mathematicalβ€”HasFDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
realMixedSpace
Prod.instAddCommGroup
Pi.addCommGroup
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real.instAddCommGroup
NumberField.InfinitePlace.IsComplex
Prod.instModule
Real.semiring
Pi.addCommMonoid
Real.instAddCommMonoid
Prod.instAddCommMonoid
Pi.Function.module
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
polarCoordReal
FDerivPolarCoordRealSymm
β€”HasFDerivAt.prodMap
hasFDerivAt_id
hasFDerivAt_pi_polarCoord_symm
Subtype.finite
Finite.of_fintype
homeoRealMixedSpacePolarSpace_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
realMixedSpace
polarSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
EquivLike.toFunLike
Homeomorph.instEquivLike
homeoRealMixedSpacePolarSpace
NumberField.InfinitePlace.not_isReal_iff_isComplex
β€”β€”
homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
realMixedSpace
polarSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
EquivLike.toFunLike
Homeomorph.instEquivLike
homeoRealMixedSpacePolarSpace
β€”NumberField.InfinitePlace.not_isReal_iff_isComplex
Subtype.prop
homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
realMixedSpace
polarSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
EquivLike.toFunLike
Homeomorph.instEquivLike
homeoRealMixedSpacePolarSpace
β€”NumberField.InfinitePlace.not_isReal_iff_isComplex
Subtype.prop
homeoRealMixedSpacePolarSpace_apply_snd πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
realMixedSpace
polarSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
EquivLike.toFunLike
Homeomorph.instEquivLike
homeoRealMixedSpacePolarSpace
β€”β€”
homeoRealMixedSpacePolarSpace_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
polarSpace
realMixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
NumberField.InfinitePlace.IsReal
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
homeoRealMixedSpacePolarSpace
β€”β€”
instIsAddHaarMeasureRealMixedSpaceVolume πŸ“–mathematicalβ€”MeasureTheory.Measure.IsAddHaarMeasure
realMixedSpace
Prod.instAddGroup
Pi.addGroup
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.instAddGroup
NumberField.InfinitePlace.IsComplex
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.measureSpace
MeasureTheory.MeasureSpace.volume
β€”MeasureTheory.Measure.prod.instIsAddHaarMeasure
MeasureTheory.Measure.instIsAddHaarMeasureForallVolumeOfMeasurableAddOfSigmaFinite
ContinuousAdd.measurableAdd
Real.borelSpace
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Prod.borelSpace
secondCountableTopologyEither_of_right
Prod.continuousAdd
MeasureTheory.Measure.instSigmaFiniteProdVolume
instIsAddHaarMeasureProdRealVolume
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Measure.instSigmaFiniteForallVolume
Pi.measurableAdd
integral_comp_polarCoordReal_symm πŸ“–mathematicalβ€”MeasureTheory.integral
realMixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
PartialEquiv.target
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
polarCoordReal
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Finset.prod
Real.instCommMonoid
Finset.univ
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
β€”MeasureTheory.setIntegral_univ
MeasureTheory.setIntegral_congr_set
polarCoordReal_symm_target_ae_eq_univ
MeasureTheory.integral_image_eq_integral_abs_det_fderiv_smul
Module.Finite.prod
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
Real.borelSpace
TopologicalSpace.instSecondCountableTopologyProd
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instIsAddHaarMeasureRealMixedSpaceVolume
IsOpen.measurableSet
Prod.opensMeasurableSpace
Pi.opensMeasurableSpace
BorelSpace.opensMeasurable
OpenPartialHomeomorph.open_target
HasFDerivAt.hasFDerivWithinAt
hasFDerivAt_polarCoordReal_symm
OpenPartialHomeomorph.injOn
MeasureTheory.setIntegral_congr_fun
det_fderivPolarCoordRealSymm
Finset.abs_prod
Real.instIsStrictOrderedRing
Finset.prod_congr
integral_comp_polarCoord_symm πŸ“–mathematicalβ€”MeasureTheory.integral
realMixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
PartialEquiv.target
mixedSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarCoord
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Finset.prod
Real.instCommMonoid
Finset.univ
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
β€”Complex.instFiniteDimensionalReal
Complex.borelSpace
MeasureTheory.MeasurePreserving.integral_comp
volume_preserving_mixedSpaceToRealMixedSpace_symm
Homeomorph.measurableEmbedding
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
Real.borelSpace
TopologicalSpace.instSecondCountableTopologyProd
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
secondCountable_of_proper
Complex.instProperSpace
integral_comp_polarCoordReal_symm
polarCoord_target_eq_polarCoordReal_target
polarCoord_symm_eq
integral_comp_polarSpaceCoord_symm πŸ“–mathematicalβ€”MeasureTheory.integral
polarSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Subtype.fintype
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
PartialEquiv.target
mixedSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace.IsReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarSpaceCoord
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Finset.prod
Real.instCommMonoid
Finset.univ
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
β€”Complex.instFiniteDimensionalReal
Complex.borelSpace
MeasureTheory.MeasurePreserving.setIntegral_preimage_emb
volume_preserving_homeoRealMixedSpacePolarSpace
Homeomorph.measurableEmbedding
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
Real.borelSpace
TopologicalSpace.instSecondCountableTopologyProd
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
integral_comp_polarCoord_symm
polarSpaceCoord_target
Homeomorph.image_eq_preimage_symm
Homeomorph.preimage_image
polarCoord_target
homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal
Finset.prod_congr
homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex
lintegral_comp_polarCoordReal_symm πŸ“–mathematicalβ€”MeasureTheory.lintegral
realMixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
PartialEquiv.target
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
polarCoordReal
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Finset.prod
CommSemiring.toCommMonoid
Finset.univ
ENNReal.ofReal
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
β€”MeasureTheory.setLIntegral_univ
MeasureTheory.setLIntegral_congr
polarCoordReal_symm_target_ae_eq_univ
MeasureTheory.lintegral_image_eq_lintegral_abs_det_fderiv_mul
Module.Finite.prod
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
Real.borelSpace
TopologicalSpace.instSecondCountableTopologyProd
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instIsAddHaarMeasureRealMixedSpaceVolume
IsOpen.measurableSet
Prod.opensMeasurableSpace
Pi.opensMeasurableSpace
BorelSpace.opensMeasurable
OpenPartialHomeomorph.open_target
HasFDerivAt.hasFDerivWithinAt
hasFDerivAt_polarCoordReal_symm
OpenPartialHomeomorph.injOn
MeasureTheory.setLIntegral_congr_fun
det_fderivPolarCoordRealSymm
Finset.abs_prod
Real.instIsStrictOrderedRing
ENNReal.ofReal_prod_of_nonneg
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Finset.prod_congr
lintegral_comp_polarCoord_symm πŸ“–mathematicalβ€”MeasureTheory.lintegral
realMixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
PartialEquiv.target
mixedSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarCoord
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Finset.prod
CommSemiring.toCommMonoid
Finset.univ
ENNReal.ofReal
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
β€”Complex.instFiniteDimensionalReal
Complex.borelSpace
MeasureTheory.MeasurePreserving.lintegral_comp_emb
volume_preserving_mixedSpaceToRealMixedSpace_symm
Homeomorph.measurableEmbedding
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
Real.borelSpace
TopologicalSpace.instSecondCountableTopologyProd
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
secondCountable_of_proper
Complex.instProperSpace
lintegral_comp_polarCoordReal_symm
polarCoord_target_eq_polarCoordReal_target
polarCoord_symm_eq
lintegral_comp_polarSpaceCoord_symm πŸ“–mathematicalβ€”MeasureTheory.lintegral
polarSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Subtype.fintype
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
PartialEquiv.target
mixedSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace.IsReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarSpaceCoord
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Finset.prod
CommSemiring.toCommMonoid
Finset.univ
ENNReal.ofReal
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
β€”Complex.instFiniteDimensionalReal
Complex.borelSpace
MeasureTheory.MeasurePreserving.setLIntegral_comp_preimage_emb
volume_preserving_homeoRealMixedSpacePolarSpace
Homeomorph.measurableEmbedding
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
Real.borelSpace
TopologicalSpace.instSecondCountableTopologyProd
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
lintegral_comp_polarCoord_symm
polarSpaceCoord_target
Homeomorph.image_eq_preimage_symm
Homeomorph.preimage_image
polarCoord_target
homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal
Finset.prod_congr
homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex
measurable_polarCoordReal_symm πŸ“–mathematicalβ€”Measurable
realMixedSpace
Prod.instMeasurableSpace
MeasurableSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.measurableSpace
NumberField.InfinitePlace.IsComplex
OpenPartialHomeomorph.toFun'
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
OpenPartialHomeomorph.symm
polarCoordReal
β€”Measurable.prodMk
measurable_fst
Measurable.comp
measurable_pi_lambda
Continuous.measurable
Prod.opensMeasurableSpace
BorelSpace.opensMeasurable
Real.borelSpace
secondCountableTopologyEither_of_right
instSecondCountableTopologyReal
Prod.borelSpace
continuous_polarCoord_symm
measurable_pi_apply
measurable_snd
measurable_polarCoord_symm πŸ“–mathematicalβ€”Measurable
realMixedSpace
mixedSpace
Prod.instMeasurableSpace
MeasurableSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.measurableSpace
NumberField.InfinitePlace.IsComplex
Complex
Complex.measurableSpace
OpenPartialHomeomorph.toFun'
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
OpenPartialHomeomorph.symm
polarCoord
β€”polarCoord_symm_eq
Measurable.comp
Homeomorph.measurable
Prod.opensMeasurableSpace
Pi.opensMeasurableSpace
Subtype.countable
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
TopologicalSpace.instSecondCountableTopologyProd
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
Prod.borelSpace
Pi.borelSpace
secondCountable_of_proper
Complex.instProperSpace
Complex.borelSpace
measurable_polarCoordReal_symm
measurable_polarSpaceCoord_symm πŸ“–mathematicalβ€”Measurable
polarSpace
mixedSpace
Prod.instMeasurableSpace
MeasurableSpace.pi
NumberField.InfinitePlace
Real
Real.measurableSpace
NumberField.InfinitePlace.IsComplex
NumberField.InfinitePlace.IsReal
Complex
Complex.measurableSpace
OpenPartialHomeomorph.toFun'
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
OpenPartialHomeomorph.symm
polarSpaceCoord
β€”polarSpaceCoord.eq_1
OpenPartialHomeomorph.transHomeomorph_symm_apply
Measurable.comp
measurable_polarCoord_symm
Homeomorph.measurable
Prod.opensMeasurableSpace
Pi.opensMeasurableSpace
Finite.to_countable
Finite.of_fintype
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
Subtype.countable
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
Prod.borelSpace
Pi.borelSpace
TopologicalSpace.instSecondCountableTopologyProd
mixedSpaceToRealMixedSpace_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
mixedSpace
realMixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
EquivLike.toFunLike
Homeomorph.instEquivLike
mixedSpaceToRealMixedSpace
Equiv
Equiv.instEquivLike
Complex.equivRealProd
β€”β€”
normAtComplexPlaces_polarSpaceCoord_symm πŸ“–mathematicalβ€”normAtComplexPlaces
OpenPartialHomeomorph.toFun'
polarSpace
mixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
NumberField.InfinitePlace.IsReal
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
OpenPartialHomeomorph.symm
polarSpaceCoord
DFunLike.coe
ContinuousLinearMap
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
realSpace
Pi.addCommMonoid
Real.instAddCommMonoid
Prod.instAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
Pi.Function.module
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
Prod.instModule
instInnerProductSpaceRealComplex
ContinuousLinearMap.funLike
mixedSpaceOfRealSpace
β€”NumberField.InfinitePlace.isReal_or_isComplex
normAtComplexPlaces_apply_isReal
normAtComplexPlaces_apply_isComplex
Complex.polarCoord_symm_apply
Complex.ofReal_cos
Complex.ofReal_sin
Complex.norm_mul
Complex.norm_real
Complex.norm_cos_add_sin_mul_I
mul_one
normAtPlace_polarCoord_symm_of_isComplex πŸ“–mathematicalNumberField.InfinitePlace.IsComplexDFunLike.coe
MonoidWithZeroHom
mixedSpace
Real
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
normAtPlace
OpenPartialHomeomorph.toFun'
realMixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
OpenPartialHomeomorph.symm
polarCoord
Norm.norm
Real.norm
β€”normAtPlace_apply_of_isComplex
Complex.polarCoord_symm_apply
Complex.ofReal_cos
Complex.ofReal_sin
Complex.norm_mul
Complex.norm_real
Complex.norm_cos_add_sin_mul_I
mul_one
normAtPlace_polarCoord_symm_of_isReal πŸ“–mathematicalNumberField.InfinitePlace.IsRealDFunLike.coe
MonoidWithZeroHom
mixedSpace
Real
Prod.instMulZeroOneClass
Pi.mulZeroOneClass
NumberField.InfinitePlace
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Real.semiring
NumberField.InfinitePlace.IsComplex
Complex
Complex.instSemiring
MonoidWithZeroHom.funLike
normAtPlace
OpenPartialHomeomorph.toFun'
realMixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
OpenPartialHomeomorph.symm
polarCoord
Norm.norm
Real.norm
β€”normAtPlace_apply_of_isReal
polarCoordReal_apply πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
realMixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
polarCoordReal
Pi.map
polarCoord
β€”β€”
polarCoordReal_source πŸ“–mathematicalβ€”PartialEquiv.source
realMixedSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
polarCoordReal
SProd.sprod
Set
Set.instSProd
Set.univ
Set.pi
polarCoord
β€”β€”
polarCoordReal_symm_target_ae_eq_univ πŸ“–mathematicalβ€”Filter.EventuallyEq
realMixedSpace
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.MeasureSpace.volume
Set.image
OpenPartialHomeomorph.toFun'
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
OpenPartialHomeomorph.symm
polarCoordReal
PartialEquiv.target
OpenPartialHomeomorph.toPartialEquiv
Set.univ
β€”MeasureTheory.Measure.instOuterMeasureClass
Set.univ_prod_univ
MeasureTheory.Measure.volume_eq_prod
OpenPartialHomeomorph.symm_image_target_eq_source
polarCoordReal_source
Set.piMap_image_univ_pi
MeasureTheory.Measure.set_prod_ae_eq
Filter.EventuallyEq.rfl
pi_polarCoord_symm_target_ae_eq_univ
polarCoordReal_target πŸ“–mathematicalβ€”PartialEquiv.target
realMixedSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
polarCoordReal
SProd.sprod
Set
Set.instSProd
Set.univ
Set.pi
Set.Ioi
Real.instPreorder
Real.instZero
Set.Ioo
Real.instNeg
Real.pi
β€”β€”
polarCoord_apply πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
mixedSpace
realMixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarCoord
Pi.map
Complex.polarCoord
β€”β€”
polarCoord_source πŸ“–mathematicalβ€”PartialEquiv.source
mixedSpace
realMixedSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarCoord
SProd.sprod
Set
Set.instSProd
Set.univ
Set.pi
Complex.polarCoord
β€”β€”
polarCoord_symm_apply πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
realMixedSpace
mixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
OpenPartialHomeomorph.symm
polarCoord
Pi.map
Complex.polarCoord
β€”β€”
polarCoord_symm_eq πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
realMixedSpace
mixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
OpenPartialHomeomorph.symm
polarCoord
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
mixedSpaceToRealMixedSpace
polarCoordReal
β€”β€”
polarCoord_target πŸ“–mathematicalβ€”PartialEquiv.target
mixedSpace
realMixedSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarCoord
SProd.sprod
Set
Set.instSProd
Set.univ
Set.pi
Complex.polarCoord
β€”β€”
polarCoord_target_eq_polarCoordReal_target πŸ“–mathematicalβ€”PartialEquiv.target
mixedSpace
realMixedSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarCoord
polarCoordReal
β€”β€”
polarSpaceCoord_apply πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
mixedSpace
polarSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarSpaceCoord
DFunLike.coe
Homeomorph
realMixedSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
homeoRealMixedSpacePolarSpace
Pi.map
Complex.polarCoord
β€”β€”
polarSpaceCoord_source πŸ“–mathematicalβ€”PartialEquiv.source
mixedSpace
polarSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarSpaceCoord
SProd.sprod
Set
Set.instSProd
Set.univ
Set.pi
Complex.polarCoord
β€”β€”
polarSpaceCoord_symm_apply πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
polarSpace
mixedSpace
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
NumberField.InfinitePlace.IsReal
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
OpenPartialHomeomorph.symm
polarSpaceCoord
Pi.map
Complex.polarCoord
β€”β€”
polarSpaceCoord_target πŸ“–mathematicalβ€”PartialEquiv.target
mixedSpace
polarSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarSpaceCoord
Set.preimage
realMixedSpace
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
homeoRealMixedSpacePolarSpace
SProd.sprod
Set
Set.instSProd
Set.univ
Set.pi
Complex.polarCoord
β€”β€”
polarSpaceCoord_target' πŸ“–mathematicalβ€”PartialEquiv.target
mixedSpace
polarSpace
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NumberField.InfinitePlace.IsComplex
Complex
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
polarSpaceCoord
SProd.sprod
Set
Set.instSProd
Set.pi
Set.univ
Set.Ioo
Real.instPreorder
Real.instNeg
Real.pi
β€”Set.ext
volume_eq_two_pi_pow_mul_integral πŸ“–mathematicalSet.preimage
mixedSpace
realSpace
normAtComplexPlaces
Set.image
MeasurableSet
Prod.instMeasurableSpace
MeasurableSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.measurableSpace
NumberField.InfinitePlace.IsComplex
Complex
Complex.measurableSpace
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.measureSpace
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.borelSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
ENNReal.ofReal
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
NumberField.InfinitePlace.nrComplexPlaces
MeasureTheory.lintegral
MeasureTheory.Measure.restrict
Finset.prod
CommSemiring.toCommMonoid
Finset.univ
β€”Complex.instFiniteDimensionalReal
Complex.borelSpace
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.lintegral_indicator_one
lintegral_comp_polarSpaceCoord_symm
polarSpaceCoord_target'
MeasureTheory.Measure.volume_eq_prod
MeasureTheory.setLIntegral_prod
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Measure.instSigmaFiniteForallVolume
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
Measurable.aemeasurable
Measurable.mul
ENNReal.instMeasurableMulβ‚‚
Finset.measurable_prod
Measurable.ennreal_ofReal
Measurable.fun_comp
measurable_pi_apply
Measurable.fst
measurable_id'
Measurable.indicator
measurable_const
MeasurableSet.preimage
measurable_polarSpaceCoord_symm
Finset.prod_congr
normAtComplexPlaces_polarSpaceCoord_symm
MeasureTheory.lintegral_const
MeasureTheory.Measure.restrict_apply
MeasurableSet.univ
Set.univ_inter
MeasureTheory.Measure.pi_pi
Real.volume_Ioo
sub_neg_eq_add
Finset.prod_const
mul_one
MeasureTheory.lintegral_mul_const'
instLawfulBCmpCompare_mathlib
mul_comm
MeasureTheory.setLIntegral_indicator
ContinuousLinearMap.measurable
Pi.opensMeasurableSpace
Finite.to_countable
Finite.of_fintype
BorelSpace.opensMeasurable
Prod.borelSpace
Pi.borelSpace
Subtype.countable
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
MeasureTheory.setLIntegral_congr
MeasureTheory.ae_eq_set_inter
MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyEq.refl
MeasureTheory.Measure.ae_eq_set_pi
MeasureTheory.ae_eq_rfl
MeasureTheory.Ioi_ae_eq_Ici
Real.noAtoms_volume
volume_eq_two_pow_mul_two_pi_pow_mul_integral πŸ“–mathematicalSet.preimage
mixedSpace
realSpace
normAtAllPlaces
Set.image
MeasurableSet
Prod.instMeasurableSpace
MeasurableSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.measurableSpace
NumberField.InfinitePlace.IsComplex
Complex
Complex.measurableSpace
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.measureSpace
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.borelSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
NumberField.InfinitePlace.nrRealPlaces
ENNReal.ofReal
Real.instMul
Real.instNatCast
Real.pi
NumberField.InfinitePlace.nrComplexPlaces
MeasureTheory.lintegral
MeasureTheory.Measure.restrict
Finset.prod
CommSemiring.toCommMonoid
Finset.univ
β€”normAtAllPlaces_norm_at_real_places
subset_antisymm
Set.instAntisymmSubset
Set.mem_preimage
normAtAllPlaces_eq_of_normAtComplexPlaces_eq
Set.mem_image_of_mem
Set.inter_subset_left
normAtComplexPlaces_apply_isReal
Set.subset_preimage_image
Complex.instFiniteDimensionalReal
Complex.borelSpace
Nat.instAtLeastTwoHAddOfNat
volume_eq_two_pow_mul_volume_plusPart
volume_eq_two_pi_pow_mul_integral
measurableSet_plusPart
mul_assoc
MeasureTheory.setLIntegral_congr
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.inter_ae_eq_left_of_ae_eq_univ
MeasureTheory.ae_eq_univ
MeasureTheory.measure_iUnion_null_iff
Subtype.countable
Finite.to_countable
Finite.of_fintype
Set.ext
realSpace.volume_eq_zero
Set.compl_iInter
volume_preserving_homeoRealMixedSpacePolarSpace πŸ“–mathematicalβ€”MeasureTheory.MeasurePreserving
realMixedSpace
polarSpace
Prod.instMeasurableSpace
MeasurableSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.measurableSpace
NumberField.InfinitePlace.IsComplex
DFunLike.coe
Homeomorph
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
homeoRealMixedSpacePolarSpace
MeasureTheory.MeasureSpace.volume
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.measureSpace
β€”MeasureTheory.MeasurePreserving.trans
MeasureTheory.MeasurePreserving.prod
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Measure.instSigmaFiniteForallVolume
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
MeasureTheory.Measure.instSigmaFiniteProdVolume
MeasureTheory.MeasurePreserving.id
MeasureTheory.volume_measurePreserving_arrowProdEquivProdArrow
MeasureTheory.MeasurePreserving.symm
MeasureTheory.volume_preserving_prodAssoc
MeasureTheory.Measure.prod.instSFinite
MeasureTheory.volume_preserving_arrowCongr'
MeasureTheory.Measure.instSFiniteProdVolume
MeasureTheory.volume_preserving_piEquivPiSubtypeProd
volume_preserving_mixedSpaceToRealMixedSpace_symm πŸ“–mathematicalβ€”MeasureTheory.MeasurePreserving
realMixedSpace
mixedSpace
Prod.instMeasurableSpace
MeasurableSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Real.measurableSpace
NumberField.InfinitePlace.IsComplex
Complex
Complex.measurableSpace
DFunLike.coe
Homeomorph
instTopologicalSpaceProd
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
mixedSpaceToRealMixedSpace
MeasureTheory.MeasureSpace.volume
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.measureSpace
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.borelSpace
β€”MeasureTheory.MeasurePreserving.prod
Complex.instFiniteDimensionalReal
Complex.borelSpace
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Measure.instSigmaFiniteForallVolume
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
FiniteDimensional.rclike_to_real
Real.borelSpace
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
MeasureTheory.Measure.instSigmaFiniteProdVolume
RingHomInvPair.ids
MeasureTheory.MeasurePreserving.id
MeasureTheory.volume_preserving_pi
SeminormedAddCommGroup.toIsTopologicalAddGroup
secondCountable_of_proper
Complex.instProperSpace
MeasureTheory.MeasurePreserving.symm
Complex.volume_preserving_equiv_real_prod

---

← Back to Index