Documentation Verification Report

ClassNumber

πŸ“ Source: Mathlib/NumberTheory/NumberField/ClassNumber.lean

Statistics

MetricCount
DefinitionsinstFintypeClassGroup, classNumber
2
TheoremsclassNumber_eq_one_iff, classNumber_ne_zero, classNumber_pos, exists_ideal_in_class_of_norm_le, classNumber_eq, isPrincipalIdealRing_of_abs_discr_lt, isPrincipalIdealRing_of_isPrincipal_of_lt_or_isPrincipal_of_mem_primesOver_of_mem_Icc, isPrincipalIdealRing_of_isPrincipal_of_norm_le, isPrincipalIdealRing_of_isPrincipal_of_norm_le_of_isPrime, isPrincipalIdealRing_of_isPrincipal_of_pow_le_of_mem_primesOver_of_mem_Icc
10
Total12

NumberField

Definitions

NameCategoryTheorems
classNumber πŸ“–CompOp
6 mathmath: dedekindZeta_residue_def, classNumber_pos, classNumber_eq_one_iff, Ideal.tendsto_norm_le_div_atTopβ‚€, Ideal.tendsto_norm_le_div_atTop, Rat.classNumber_eq

Theorems

NameKindAssumesProvesValidatesDepends On
classNumber_eq_one_iff πŸ“–mathematicalβ€”classNumber
IsPrincipalIdealRing
RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
RingOfIntegers.instCommRing
β€”card_classGroup_eq_one_iff
RingOfIntegers.instIsDomain
RingOfIntegers.instIsDedekindDomain
classNumber_ne_zero πŸ“–β€”β€”β€”β€”Fintype.card_ne_zero
RingOfIntegers.instIsDomain
classNumber_pos πŸ“–mathematicalβ€”classNumberβ€”Fintype.card_pos
RingOfIntegers.instIsDomain
exists_ideal_in_class_of_norm_le πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Ideal
RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
RingOfIntegers.instCommRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
ClassGroup
RingOfIntegers.instIsDomain
MulOneClass.toMulOne
Submonoid.toMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupClassGroup
MonoidHom.instFunLike
RingOfIntegers.instIsDedekindDomain
Real
Real.instLE
Real.instNatCast
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
RingOfIntegers.instNontrivial
RingOfIntegers.instFreeInt
Real.instMul
Monoid.toNatPow
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.pi
InfinitePlace.nrComplexPlaces
Nat.factorial
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Real.sqrt
abs
Real.lattice
Real.instAddGroup
Real.instIntCast
discr
β€”RingOfIntegers.instIsDomain
RingOfIntegers.instIsDedekindDomain
RingOfIntegers.instNontrivial
RingOfIntegers.instFreeInt
Nat.instAtLeastTwoHAddOfNat
to_charZero
RingOfIntegers.instIsFractionRing
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr
IsScalarTower.right
Ideal.dvd_iff_le
Ideal.span_singleton_le_iff_mem
Mathlib.Tactic.Contrapose.contraposeβ‚„
Algebra.linearMap_apply
Ideal.span_singleton_eq_bot
Ideal.zero_eq_bot
MulZeroClass.mul_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mem_nonZeroDivisors_iff_ne_zero
Ideal.instNoZeroDivisors
IsDomain.to_noZeroDivisors
Ideal.instNontrivial
Subtype.coe_ne_coe
mul_comm
inv_inv
le_of_mul_le_mul_of_pos_left
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
mul_assoc
mul_div_assoc
Rat.cast_natCast
FractionalIdeal.coeIdeal_absNorm
FractionalIdeal.coe_mk0
Ideal.absNorm_apply
Rat.cast_mul
RCLike.charZero_rclike
Nat.cast_mul
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
FractionalIdeal.coeIdeal_span_singleton
FractionalIdeal.absNorm_span_singleton
RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors
to_finiteDimensional
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
pos_of_ne_zero
Nat.instCanonicallyOrderedAdd
Ideal.absNorm_ne_zero_of_nonZeroDivisors

NumberField.RingOfIntegers

Definitions

NameCategoryTheorems
instFintypeClassGroup πŸ“–CompOpβ€”

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
classNumber_eq πŸ“–mathematicalβ€”NumberField.classNumber
instField
numberField
β€”numberField
NumberField.classNumber_eq_one_iff
IsPrincipalIdealRing.of_surjective
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
EuclideanDomain.to_principal_ideal_domain
RingEquiv.surjective

RingOfIntegers

Theorems

NameKindAssumesProvesValidatesDepends On
isPrincipalIdealRing_of_abs_discr_lt πŸ“–mathematicalReal
Real.instLT
Real.instIntCast
abs
instLatticeInt
Int.instAddGroup
NumberField.discr
Monoid.toNatPow
Real.instMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
NumberField.InfinitePlace.nrComplexPlaces
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
Nat.factorial
IsPrincipalIdealRing
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
β€”Nat.instAtLeastTwoHAddOfNat
NumberField.to_charZero
Module.finrank_pos
commRing_strongRankCondition
Rat.nontrivial
NumberField.to_finiteDimensional
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
isPrincipalIdealRing_of_isPrincipal_of_norm_le
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Ideal.absNorm_eq_one_iff
le_antisymm
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
lt_of_le_of_lt
Int.cast_abs
Real.instIsStrictOrderedRing
mul_assoc
inv_div
inv_pow
mul_inv
inv_mul_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_pos
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
div_pos
Real.pi_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_pos'
NeZero.charZero_one
Nat.factorial_pos
Real.sqrt_lt
Int.cast_nonneg
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
abs_nonneg
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
le_of_lt
Ideal.absNorm_ne_zero_of_nonZeroDivisors
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
top_isPrincipal
isPrincipalIdealRing_of_isPrincipal_of_lt_or_isPrincipal_of_mem_primesOver_of_mem_Icc πŸ“–mathematicalIdeal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Set
Set.instMembership
Ideal.primesOver
Int.instCommSemiring
Ideal.span
Set.instSingletonSet
Ring.toIntAlgebra
CommRing.toRing
Nat.floor
Real
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
Real.instMul
Monoid.toNatPow
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
NumberField.InfinitePlace.nrComplexPlaces
Nat.factorial
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
Real.sqrt
abs
Real.lattice
Real.instAddGroup
Real.instIntCast
NumberField.discr
Nat.instMonoid
Ideal.inertiaDeg
Int.instCommRing
Int.instSemiring
Submodule.IsPrincipal
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsPrincipalIdealRingβ€”NumberField.to_charZero
Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
isPrincipalIdealRing_of_isPrincipal_of_pow_le_of_mem_primesOver_of_mem_Icc
Ideal.IsPrime.isMaximal
IsDedekindDomainDvr.ring_dimensionLEOne
Int.instIsDomain
IsDedekindDomain.isDedekindDomainDvr
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
Ideal.isPrime_of_prime
Ideal.prime_span_singleton_iff
Nat.prime_iff_prime_int
Nat.Prime.ne_zero
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Nat.cast_pow
Ideal.exists_smul_eq_of_isGaloisGroup
Finite.algEquiv
Finite.algHom
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
Rat.isDomain
NumberField.to_finiteDimensional
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
instIsDomain
instIsGaloisGroupIntRingOfIntegersOfRat
IsGaloisGroup.of_isGalois
Submodule.IsPrincipal.map_ringHom
RingHom.instRingHomClass
Ideal.inertiaDeg_eq_of_isGaloisGroup
isPrincipalIdealRing_of_isPrincipal_of_norm_le πŸ“–mathematicalSubmodule.IsPrincipal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsPrincipalIdealRingβ€”NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Nat.instAtLeastTwoHAddOfNat
NumberField.to_charZero
NumberField.classNumber_eq_one_iff
NumberField.RingOfIntegers.instIsDomain
NumberField.classNumber.eq_1
Fintype.card_eq_one_iff
NumberField.exists_ideal_in_class_of_norm_le
Subtype.coe_eta
isPrincipalIdealRing_of_isPrincipal_of_norm_le_of_isPrime πŸ“–mathematicalSubmodule.IsPrincipal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsPrincipalIdealRingβ€”NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Nat.instAtLeastTwoHAddOfNat
NumberField.to_charZero
isPrincipalIdealRing_of_isPrincipal_of_norm_le
Ideal.mem_isPrincipalSubmonoid_iff
Ideal.uniqueFactorizationMonoid
prod_normalizedFactors_eq_self
nonZeroDivisors.coe_ne_zero
Ideal.instNontrivial
Submonoid.multiset_prod_mem
bot_isPrincipal
mem_nonZeroDivisors_of_ne_zero
Ideal.instNoZeroDivisors
IsDomain.to_noZeroDivisors
NumberField.RingOfIntegers.instIsDomain
Ideal.mem_normalizedFactors_iff
LE.le.trans
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Ideal.absNorm_pos_of_nonZeroDivisors
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
Ideal.absNorm_dvd_absNorm_of_le
Ideal.le_of_dvd
UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
isPrincipalIdealRing_of_isPrincipal_of_pow_le_of_mem_primesOver_of_mem_Icc πŸ“–mathematicalSubmodule.IsPrincipal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsPrincipalIdealRingβ€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
NumberField.to_charZero
isPrincipalIdealRing_of_isPrincipal_of_norm_le_of_isPrime
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
IsPrincipalIdealRing.principal
EuclideanDomain.to_principal_ideal_domain
nonZeroDivisors.coe_ne_zero
Ideal.instNontrivial
Ideal.eq_bot_of_comap_eq_bot
Int.instNontrivial
NumberField.RingOfIntegers.instIsDomain
NumberField.RingOfIntegers.instIsIntegralInt
RingHom.instRingHomClass
Ideal.span_singleton_prime
abs_choice
Ideal.over_under
Nat.cast_natAbs
Int.cast_neg
Ideal.span_singleton_neg
Nat.le_floor
Real.instIsOrderedRing
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Ideal.absNorm_eq_pow_inertiaDeg
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
Ideal.IsPrime.under
Int.prime_iff_natAbs_prime
Ideal.IsPrime.isMaximal
IsDedekindDomainDvr.ring_dimensionLEOne
Int.instIsDomain
IsDedekindDomain.isDedekindDomainDvr
IsPrincipalIdealRing.isDedekindDomain
Ideal.isPrime_of_prime
Ideal.prime_span_singleton_iff
Prime.ne_zero
Ideal.inertiaDeg_pos
Finset.mem_Icc
Nat.Prime.one_le
le_trans

---

← Back to Index