Documentation Verification Report

Embeddings

πŸ“ Source: Mathlib/NumberTheory/NumberField/Cyclotomic/Embeddings.lean

Statistics

MetricCount
Definitions0
TheoremsisTotallyComplex, nrComplexPlaces_eq_totient_div_two, nrRealPlaces_eq_zero
3
Total3

IsCyclotomicExtension.Rat

Theorems

NameKindAssumesProvesValidatesDepends On
isTotallyComplex πŸ“–mathematicalβ€”NumberField.IsTotallyComplexβ€”IsCyclotomicExtension.numberField
Rat.numberField
Finite.of_fintype
NumberField.nrRealPlaces_eq_zero_iff
nrRealPlaces_eq_zero
nrComplexPlaces_eq_totient_div_two πŸ“–mathematicalβ€”NumberField.InfinitePlace.nrComplexPlaces
IsCyclotomicExtension.numberField
Set
Set.instSingletonSet
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
Rat.numberField
Finite.of_fintype
Set.Elem
Set.fintypeSingleton
Nat.totient
β€”IsCyclotomicExtension.numberField
Rat.numberField
Finite.of_fintype
Nat.totient_even
NumberField.to_charZero
NumberField.InfinitePlace.card_add_two_mul_card_eq_rank
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
two_mul
IsCyclotomicExtension.finrank
instIsDomain
Polynomial.cyclotomic.irreducible_rat
NeZero.pos
Nat.instCanonicallyOrderedAdd
zero_add
nrRealPlaces_eq_zero
mul_div_cancel_leftβ‚€
Nat.instMulDivCancelClass
eq_of_le_of_not_lt
Nat.totient_two
not_lt
Nat.totient_one
NumberField.InfinitePlace.nrComplexPlaces_eq_zero_of_finrank_eq_one
nrRealPlaces_eq_zero πŸ“–mathematicalβ€”NumberField.InfinitePlace.nrRealPlaces
IsCyclotomicExtension.numberField
Set
Set.instSingletonSet
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
Rat.numberField
Finite.of_fintype
Set.Elem
Set.fintypeSingleton
β€”IsCyclotomicExtension.numberField
Rat.numberField
Finite.of_fintype
NumberField.InfinitePlace.IsPrimitiveRoot.nrRealPlaces_eq_zero_of_two_lt
IsCyclotomicExtension.zeta_spec

---

← Back to Index