Documentation Verification Report

PID

๐Ÿ“ Source: Mathlib/NumberTheory/NumberField/Cyclotomic/PID.lean

Statistics

MetricCount
Definitions0
Theoremsfive_pid, three_pid
2
Total2

IsCyclotomicExtension.Rat

Theorems

NameKindAssumesProvesValidatesDepends On
five_pid ๐Ÿ“–mathematicalโ€”IsPrincipalIdealRing
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
โ€”NumberField.to_charZero
Nat.prime_five
RingOfIntegers.isPrincipalIdealRing_of_abs_discr_lt
Nat.instAtLeastTwoHAddOfNat
IsCyclotomicExtension.numberField
Rat.numberField
Finite.of_fintype
discr_prime
IsCyclotomicExtension.finrank
instIsDomain
Polynomial.cyclotomic.irreducible_rat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
nrComplexPlaces_eq_totient_div_two
Nat.totient_prime
tsub_zero
Nat.instOrderedSub
Even.neg_pow
one_pow
one_mul
Int.cast_abs
Real.instIsStrictOrderedRing
Int.cast_ofNat
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instIsOrderedRing
Real.instNontrivial
div_pow
pow_lt_pow_leftโ‚€
IsStrictOrderedRing.toPosMulStrictMono
IsOrderedRing.toMulPosMono
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
mul_lt_mul_of_pos_left
div_lt_div_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
Real.pi_gt_three
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
ne_of_gt
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
mul_pos
lt_trans
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNatPowT.trans
three_pid ๐Ÿ“–mathematicalโ€”IsPrincipalIdealRing
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
โ€”NumberField.to_charZero
RingOfIntegers.isPrincipalIdealRing_of_abs_discr_lt
Nat.instAtLeastTwoHAddOfNat
IsCyclotomicExtension.numberField
Rat.numberField
Finite.of_fintype
discr_prime
Nat.fact_prime_three
IsCyclotomicExtension.finrank
instIsDomain
Polynomial.cyclotomic.irreducible_rat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
nrComplexPlaces_eq_totient_div_two
Nat.totient_prime
Nat.prime_three
tsub_zero
Nat.instOrderedSub
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
pow_one
neg_mul
one_mul
abs_neg
Int.cast_abs
Real.instIsStrictOrderedRing
Int.cast_ofNat
abs_of_pos
Real.instIsOrderedAddMonoid
zero_lt_three'
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
pow_lt_pow_leftโ‚€
IsStrictOrderedRing.toPosMulStrictMono
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
mul_lt_mul_of_pos_left
div_lt_div_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
Real.pi_gt_three
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
le_of_lt
mul_pos
ne_of_gt
lt_trans
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0

---

โ† Back to Index