Documentation Verification Report

DedekindZeta

πŸ“ Source: Mathlib/NumberTheory/NumberField/DedekindZeta.lean

Statistics

MetricCount
DefinitionsdedekindZeta, dedekindZeta_residue
2
TheoremsdedekindZeta_residue_def, dedekindZeta_residue_ne_zero, dedekindZeta_residue_pos, tendsto_sub_one_mul_dedekindZeta_nhdsGT
4
Total6

NumberField

Definitions

NameCategoryTheorems
dedekindZeta πŸ“–CompOp
1 mathmath: tendsto_sub_one_mul_dedekindZeta_nhdsGT
dedekindZeta_residue πŸ“–CompOp
3 mathmath: dedekindZeta_residue_def, tendsto_sub_one_mul_dedekindZeta_nhdsGT, dedekindZeta_residue_pos

Theorems

NameKindAssumesProvesValidatesDepends On
dedekindZeta_residue_def πŸ“–mathematicalβ€”dedekindZeta_residue
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
InfinitePlace.nrRealPlaces
Real.pi
InfinitePlace.nrComplexPlaces
Units.regulator
classNumber
Units.torsionOrder
Real.sqrt
abs
Real.lattice
Real.instAddGroup
Real.instIntCast
discr
β€”β€”
dedekindZeta_residue_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
dedekindZeta_residue_pos
dedekindZeta_residue_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
dedekindZeta_residue
β€”div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_pos
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.pi_pos
Units.regulator_pos
Nat.cast_pos
classNumber_pos
Units.torsionOrder_pos
Real.sqrt_pos_of_pos
abs_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Int.cast_ne_zero
RCLike.charZero_rclike
discr_ne_zero
tendsto_sub_one_mul_dedekindZeta_nhdsGT πŸ“–mathematicalβ€”Filter.Tendsto
Real
Complex
Complex.instMul
Complex.instSub
Complex.ofReal
Complex.instOne
dedekindZeta
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instOne
Set.Ioi
Real.instPreorder
nhds
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
dedekindZeta_residue
β€”LSeries_tendsto_sub_mul_nhds_one_of_tendsto_sum_div_and_nonneg
RingOfIntegers.instNontrivial
RingOfIntegers.instIsDedekindDomain
RingOfIntegers.instFreeInt
Filter.Tendsto.congr
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
AddRightCancelSemigroup.toIsRightCancelAdd
Ideal.card_norm_le_eq_card_norm_le_add_one
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
RingOfIntegers.instCharZero_1
to_charZero
Finset.Icc_succ_left_eq_Ioc
Nat.instNoMaxOrder
Nat.card_eq_fintype_card
Fintype.card_unique
Finset.sum_Ioc_add_eq_sum_Icc
Finset.card_preimage_eq_sum_card_image_eq
Ideal.finite_setOf_absNorm_eq
Finset.coe_Icc
Nat.instCanonicallyOrderedAdd
Filter.Tendsto.comp
Nat.instAtLeastTwoHAddOfNat
Ideal.tendsto_norm_le_div_atTopβ‚€
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
Nat.cast_nonneg

---

← Back to Index