Documentation Verification Report

Basic

📁 Source: Mathlib/NumberTheory/NumberField/Discriminant/Basic.lean

Statistics

MetricCount
DefinitionsboundOfDiscBdd, rankOfDiscrBdd
2
Theoremsabs_discr_ge, abs_discr_ge', abs_discr_ge_of_isTotallyComplex, abs_discr_gt_two, abs_discr_rpow_ge_of_isTotallyComplex, discr_eq_basisMatrix_det_sq, exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, finite_of_discr_bdd, finite_of_discr_bdd_of_isComplex, finite_of_discr_bdd_of_isReal, finite_of_finite_generating_set, minkowskiBound_lt_boundOfDiscBdd, natDegree_le_rankOfDiscrBdd, rank_le_rankOfDiscrBdd, covolume_idealLattice, covolume_integerLattice, volume_fundamentalDomain_latticeBasis, sign_discr
19
Total21

NumberField

Theorems

NameKindAssumesProvesValidatesDepends On
abs_discr_ge 📖mathematicalModule.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Real
Real.instLE
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
Real.instMonoid
Real.pi
Real.instIntCast
abs
instLatticeInt
Int.instAddGroup
discr
—to_charZero
le_trans
Nat.instAtLeastTwoHAddOfNat
mul_comm
Nat.le_induction
le_of_eq
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Real.pi_pos
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.isNat_mul
Nat.cast_mul
one_div
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_add
Nat.cast_one
one_add_mul_le_pow
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isInt_le_true
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instNontrivial
add_mul
Distrib.rightDistribClass
pow_succ
pow_zero
Nat.factorial_pos
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
add_pos'
Nat.instIsOrderedAddMonoid
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_add
div_pow
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_mul
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_atom
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
le_div_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
div_le_div₀
lt_trans
le_refl
mul_le_mul_of_nonneg_right
pow_le_pow_right₀
one_le_div
Real.pi_le_four
InfinitePlace.card_add_two_mul_card_eq_rank
abs_discr_ge'
abs_discr_ge' 📖mathematical—Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Real.instMul
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.pi
InfinitePlace.nrComplexPlaces
Nat.factorial
Real.instIntCast
abs
instLatticeInt
Int.instAddGroup
discr
—to_charZero
Nat.instAtLeastTwoHAddOfNat
exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr
Algebra.coe_norm_int
Int.cast_one
Int.cast_abs
Rat.instIsStrictOrderedRing
Rat.cast_intCast
Int.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Int.one_le_abs
Algebra.norm_ne_zero_iff
Int.instIsDomain
RingOfIntegers.instIsDomain
RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
le_trans
mul_comm
pow_mul
mul_pow
div_pow
Real.instIsStrictOrderedRing
Real.le_sqrt
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Real.instIsOrderedRing
IsOrderedRing.toPosMulMono
Nat.cast_nonneg'
mul_pos
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.pi_pos
Nat.cast_pos'
Nat.factorial_pos
abs_nonneg
covariant_swap_add_of_covariant_add
mul_one
inv_div
inv_mul_le_iff₀
Nat.cast_pos
Module.finrank_pos
commRing_strongRankCondition
Rat.nontrivial
to_finiteDimensional
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
abs_discr_ge_of_isTotallyComplex 📖mathematical—Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Real.instMul
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.pi
Nat.factorial
Real.instIntCast
abs
instLatticeInt
Int.instAddGroup
discr
—to_charZero
Nat.instAtLeastTwoHAddOfNat
abs_discr_ge'
IsTotallyComplex.finrank
abs_discr_gt_two 📖mathematicalModule.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
abs
instLatticeInt
Int.instAddGroup
discr
—to_charZero
Nat.instAtLeastTwoHAddOfNat
Int.cast_ofNat
Int.cast_abs
Rat.instIsStrictOrderedRing
Rat.cast_abs
Real.instIsStrictOrderedRing
Rat.cast_intCast
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
RCLike.charZero_rclike
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.mul_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
CancelDenoms.pow_subst
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.pi_gt_three
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
pow_le_pow_right₀
Real.instZeroLEOneClass
le_of_not_gt
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
abs_discr_ge
abs_discr_rpow_ge_of_isTotallyComplex 📖mathematical—Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Real.instMul
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instPow
Nat.factorial
Real.instInv
Real.instIntCast
abs
instLatticeInt
Int.instAddGroup
discr
—to_charZero
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Module.finrank_pos
commRing_strongRankCondition
Rat.nontrivial
to_finiteDimensional
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
Nat.instAtLeastTwoHAddOfNat
Real.rpow_le_rpow_iff
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.pi_pos
Real.rpow_pos_of_pos
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Nat.factorial_pos
Real.rpow_nonneg
Int.cast_nonneg
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
abs_nonneg
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
Real.div_rpow
Real.rpow_mul
inv_mul_cancel₀
LT.lt.ne'
Real.rpow_one
Real.mul_rpow
Real.rpow_natCast
pow_mul
inv_mul_cancel_right₀
Real.rpow_two
abs_discr_ge_of_isTotallyComplex
discr_eq_basisMatrix_det_sq 📖mathematical—Complex
Complex.instIntCast
discr
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Matrix.det
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Embeddings.instFintypeRingHom
Complex.instField
Complex.instCharZero
Complex.commRing
basisMatrix
—Complex.instCharZero
Rat.cast_intCast
RingOfIntegers.instFreeInt
to_charZero
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
coe_discr
basisMatrix_eq_embeddingsMatrixReindex
Algebra.discr_eq_det_embeddingsMatrixReindex_pow_two
to_finiteDimensional
Complex.isAlgClosed
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
Rat.instCharZero
Equiv.symm_symm
Algebra.discr_reindex
eq_ratCast
RingHom.instRingHomClass
exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr 📖mathematical—FractionalIdeal
RingOfIntegers
RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
SetLike.instMembership
FractionalIdeal.instSetLike
Units.val
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
RingOfIntegers.instIsFractionRing
RingOfIntegers.instIsDedekindDomain
Real
Real.instLE
Real.instRatCast
abs
Rat.instLattice
Rat.addGroup
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Rat.commRing
MonoidHom.instFunLike
Algebra.norm
DivisionRing.toRatAlgebra
to_charZero
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
MonoidWithZeroHom
FractionalIdeal.commSemiring
Rat.semiring
MonoidWithZeroHom.funLike
FractionalIdeal.absNorm
RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
CommRing.toRing
RingOfIntegers.instIsNoetherianInt
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
InfinitePlace.nrComplexPlaces
Nat.factorial
Module.finrank
Algebra.toModule
Rat.commSemiring
Real.sqrt
Real.lattice
Real.instAddGroup
Real.instIntCast
discr
—RingOfIntegers.instIsFractionRing
RingOfIntegers.instIsDedekindDomain
to_charZero
Complex.instFiniteDimensionalReal
Complex.borelSpace
le_of_eq
mixedEmbedding.convexBodySum_volume
ENNReal.ofReal_pow
Real.rpow_nonneg
ENNReal.toReal_nonneg
Real.rpow_natCast
Real.rpow_mul
div_mul_cancel₀
Nat.cast_ne_zero
RCLike.charZero_rclike
ne_of_gt
Module.finrank_pos
commRing_strongRankCondition
Rat.nontrivial
to_finiteDimensional
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
Real.rpow_one
ENNReal.ofReal_toReal
ENNReal.mul_ne_top
ne_of_lt
mixedEmbedding.minkowskiBound_lt_top
ENNReal.coe_ne_top
mul_comm
mul_assoc
ENNReal.coe_mul
inv_mul_cancel₀
mixedEmbedding.convexBodySumFactor_ne_zero
ENNReal.coe_one
mul_one
RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
Nat.instAtLeastTwoHAddOfNat
div_pow
mul_comm_div
mul_div_assoc'
mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis
mixedEmbedding.volume_fundamentalDomain_latticeBasis
ENNReal.toReal_mul
ENNReal.toReal_pow
ENNReal.toReal_inv
ENNReal.toReal_ofNat
mixedEmbedding.finrank
ENNReal.toReal_ofReal
Rat.cast_nonneg
Real.instIsStrictOrderedRing
FractionalIdeal.absNorm_nonneg
NNReal.coe_natCast
inv_div
div_eq_mul_inv
mul_inv
mul_zpow
neg_one_mul
mul_neg_one
neg_neg
Real.coe_sqrt
sub_eq_add_neg
zpow_add₀
two_ne_zero
CharZero.NeZero.two
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
InfinitePlace.card_add_two_mul_card_eq_rank
Nat.cast_add
Nat.cast_mul
Nat.cast_ofNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isNat_add
Int.norm_eq_abs
zpow_mul
zpow_natCast
inv_eq_one_div
one_pow
Mathlib.Tactic.Ring.pow_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.div_congr
Nat.cast_one
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le
exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr 📖mathematical—Real
Real.instLE
Real.instRatCast
abs
Rat.instLattice
Rat.addGroup
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
CommSemiring.toSemiring
CommRing.toCommSemiring
Rat.commRing
MonoidHom.instFunLike
Algebra.norm
DivisionRing.toRatAlgebra
to_charZero
RingOfIntegers.val
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
InfinitePlace.nrComplexPlaces
Nat.factorial
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.sqrt
Real.lattice
Real.instAddGroup
Real.instIntCast
discr
—RingOfIntegers.instIsFractionRing
RingOfIntegers.instIsDedekindDomain
to_charZero
RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
Nat.instAtLeastTwoHAddOfNat
exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr
FractionalIdeal.mem_one_iff
ne_zero_of_map
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
Rat.cast_one
FractionalIdeal.absNorm_one
finite_of_discr_bdd 📖mathematical—Set.Finite
IntermediateField
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
FiniteDimensional
SetLike.instMembership
IntermediateField.instSetLike
Rat.instDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
IntermediateField.toField
IntermediateField.module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Rat.commSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
Field.toSemifield
IsScalarTower.rat
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Rat.instNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
setOf
abs
instLatticeInt
Int.instAddGroup
discr
CharZero
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
IntermediateField.charZero
Rat.instCharZero
Subtype.prop
—Set.Finite.subset
IsScalarTower.rat
IntermediateField.charZero
Rat.instCharZero
Subtype.prop
Set.Finite.union
hermiteTheorem.finite_of_discr_bdd_of_isReal
hermiteTheorem.finite_of_discr_bdd_of_isComplex
SubsemiringClass.instCharZero
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
instNonemptyInfinitePlaceOfRingHomComplex
Embeddings.instNonemptyRingHom
Complex.instCharZero
Complex.isAlgClosed
Set.mem_union_left
Set.mem_union_right
InfinitePlace.not_isReal_iff_isComplex
sign_discr 📖mathematical—discr
Monoid.toNatPow
Int.instMonoid
InfinitePlace.nrComplexPlaces
—Complex.instCharZero
discr_eq_basisMatrix_det_sq
Complex.sq_nonneg_iff
Complex.conj_eq_iff_im
RingHom.map_det
RingHom.mapMatrix_apply
ComplexEmbedding.involutive_conjugate
conj_basisMatrix
Matrix.reindex_apply
Equiv.refl_symm
Equiv.coe_refl
Function.Involutive.toPerm_symm
Matrix.det_permute'
mul_eq_right₀
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
det_of_basisMatrix_non_zero
InfinitePlace.ComplexEmbedding.conjugate_sign
Int.cast_pow
Int.cast_neg
Int.cast_one
neg_one_pow_eq_one_iff_even
Mathlib.Meta.NormNum.isInt_eq_false
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Even.neg_one_pow
Int.cast_nonneg
IsOrderedAddMonoid.toAddLeftMono
RCLike.toIsOrderedAddMonoid
RCLike.toZeroLEOneClass
LT.lt.le
Odd.neg_one_pow
Nat.not_even_iff_odd
Int.cast_nonneg_iff
NeZero.charZero_one
not_le

NumberField.hermiteTheorem

Definitions

NameCategoryTheorems
boundOfDiscBdd 📖CompOp
1 mathmath: minkowskiBound_lt_boundOfDiscBdd
rankOfDiscrBdd 📖CompOp
2 mathmath: natDegree_le_rankOfDiscrBdd, rank_le_rankOfDiscrBdd

Theorems

NameKindAssumesProvesValidatesDepends On
finite_of_discr_bdd_of_isComplex 📖mathematical—Set.Finite
IntermediateField
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
FiniteDimensional
SetLike.instMembership
IntermediateField.instSetLike
Rat.instDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
IntermediateField.toField
IntermediateField.module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Rat.commSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
Field.toSemifield
IsScalarTower.rat
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Rat.instNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
setOf
Set.Nonempty
NumberField.InfinitePlace
NumberField.InfinitePlace.IsComplex
abs
instLatticeInt
Int.instAddGroup
NumberField.discr
CharZero
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
IntermediateField.charZero
Rat.instCharZero
Subtype.prop
—finite_of_finite_generating_set
IsScalarTower.rat
IntermediateField.charZero
Rat.instCharZero
Subtype.prop
instIsDomain
Polynomial.bUnion_roots_finite
Set.finite_Icc
SubsemiringClass.instCharZero
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
minkowskiBound_lt_boundOfDiscBdd
one_mul
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
Nat.cast_one
NumberField.mixedEmbedding.one_le_convexBodyLT'Factor
NumberField.to_charZero
NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex
NumberField.RingOfIntegers.isIntegral_coe
AddCommGroup.intIsScalarTower
natDegree_le_rankOfDiscrBdd
Set.mem_Icc
abs_le
Int.instIsOrderedAddMonoid
Int.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
LE.le.trans
Eq.trans_le
minpoly.isIntegrallyClosed_eq_field_fractions'
Int.instIsDomain
Rat.isFractionRing
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.coeff_map
eq_intCast
RingHom.instRingHomClass
Int.norm_cast_rat
Int.norm_eq_abs
Int.cast_abs
Real.instIsStrictOrderedRing
NumberField.Embeddings.coeff_bdd_of_norm_le
Complex.isAlgClosed
Complex.instCharZero
NumberField.InfinitePlace.le_iff_le
le_of_lt
le_trans
NNReal.val_eq_coe
NNReal.coe_mul
NNReal.coe_pow
NNReal.coe_max
NNReal.coe_one
Real.coe_sqrt
NNReal.coe_add
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
pow_le_pow_right₀
le_max_right
rank_le_rankOfDiscrBdd
NNReal.coe_natCast
Nat.cast_le
Nat.choose_le_choose
Nat.choose_le_middle
Nat.cast_nonneg'
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
lt_max_of_lt_left
Real.sqrt_pos_of_pos
add_pos'
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.Positivity.nnreal_coe_pos
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
NNReal.addLeftMono
mul_nonneg
NNReal.instIsOrderedRing
zero_le
NNReal.instCanonicallyOrderedAdd
NNReal.instIsStrictOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.le_ceil
Polynomial.mem_rootSet
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
minpoly.ne_zero
Int.instNontrivial
Polynomial.aeval_algebraMap_eq_zero_iff
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.aeval
IntermediateField.lift_top
IsScalarTower.left
IntermediateField.lift_adjoin
Set.image_singleton
IntermediateField.lift_injective
finite_of_discr_bdd_of_isReal 📖mathematical—Set.Finite
IntermediateField
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
FiniteDimensional
SetLike.instMembership
IntermediateField.instSetLike
Rat.instDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
IntermediateField.toField
IntermediateField.module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Rat.commSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
Field.toSemifield
IsScalarTower.rat
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Rat.instNormedField
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
setOf
Set.Nonempty
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
abs
instLatticeInt
Int.instAddGroup
NumberField.discr
CharZero
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
IntermediateField.charZero
Rat.instCharZero
Subtype.prop
—finite_of_finite_generating_set
IsScalarTower.rat
IntermediateField.charZero
Rat.instCharZero
Subtype.prop
instIsDomain
Polynomial.bUnion_roots_finite
Set.finite_Icc
SubsemiringClass.instCharZero
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
minkowskiBound_lt_boundOfDiscBdd
one_mul
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
Nat.cast_one
NumberField.mixedEmbedding.one_le_convexBodyLTFactor
NumberField.to_charZero
NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal
NumberField.RingOfIntegers.isIntegral_coe
AddCommGroup.intIsScalarTower
natDegree_le_rankOfDiscrBdd
Set.mem_Icc
abs_le
Int.instIsOrderedAddMonoid
Int.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
LE.le.trans
Eq.trans_le
minpoly.isIntegrallyClosed_eq_field_fractions'
Int.instIsDomain
Rat.isFractionRing
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.coeff_map
eq_intCast
RingHom.instRingHomClass
Int.norm_cast_rat
Int.norm_eq_abs
Int.cast_abs
Real.instIsStrictOrderedRing
NumberField.Embeddings.coeff_bdd_of_norm_le
Complex.isAlgClosed
Complex.instCharZero
NumberField.InfinitePlace.le_iff_le
le_of_lt
le_trans
NNReal.coe_max
sup_of_le_left
NNReal.val_eq_coe
NNReal.coe_mul
NNReal.coe_pow
NNReal.coe_one
NNReal.coe_natCast
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
pow_le_pow_right₀
le_max_right
rank_le_rankOfDiscrBdd
Nat.mono_cast
Nat.choose_le_choose
Nat.choose_le_middle
Nat.cast_nonneg'
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
lt_max_of_lt_left
Mathlib.Meta.Positivity.nnreal_coe_pos
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
NNReal.addLeftMono
mul_nonneg
NNReal.instIsOrderedRing
zero_le
NNReal.instCanonicallyOrderedAdd
NNReal.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.le_ceil
Polynomial.mem_rootSet
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
minpoly.ne_zero
Int.instNontrivial
Polynomial.aeval_algebraMap_eq_zero_iff
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.aeval
IntermediateField.lift_top
IsScalarTower.left
IntermediateField.lift_adjoin
Set.image_singleton
IntermediateField.lift_injective
finite_of_finite_generating_set 📖mathematicalSet
Set.instMembership
IntermediateField
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
IntermediateField.adjoin
Set.instSingletonSet
Set.Finite—Set.finite_coe_iff
Finite.of_injective
Subtype.mem
minkowskiBound_lt_boundOfDiscBdd 📖mathematicalabs
instLatticeInt
Int.instAddGroup
NumberField.discr
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
NumberField.mixedEmbedding.minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
ENNReal.ofNNReal
boundOfDiscBdd
—add_tsub_cancel_right
NNReal.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
NNReal.addLeftReflectLT
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
NNReal.addLeftMono
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
lt_of_le_of_lt
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
NumberField.mixedEmbedding.minkowskiBound.eq_1
NumberField.RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis
boundOfDiscBdd.eq_1
Units.val_one
FractionalIdeal.absNorm_one
Rat.cast_one
ENNReal.ofReal_one
one_mul
NumberField.to_charZero
NumberField.mixedEmbedding.finrank
Nat.instAtLeastTwoHAddOfNat
NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis
ENNReal.coe_mul
ENNReal.coe_pow
ENNReal.coe_ofNat
mul_le_mul'
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
covariant_swap_mul_of_covariant_mul
pow_le_one₀
IsOrderedRing.toPosMulMono
ENNReal.instIsOrderedRing
zero_le
ENNReal.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instCharZero
ENNReal.coe_le_coe_of_le
NNReal.coe_le_coe
coe_nnnorm
Int.norm_eq_abs
Int.cast_abs
Real.instIsStrictOrderedRing
NNReal.coe_natCast
Int.cast_natCast
Int.cast_le
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
pow_le_pow_right'
one_le_two
rank_le_rankOfDiscrBdd
ENNReal.coe_lt_coe
natDegree_le_rankOfDiscrBdd 📖mathematicalabs
instLatticeInt
Int.instAddGroup
NumberField.discr
IntermediateField.adjoin
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
Set
Set.instSingletonSet
NumberField.RingOfIntegers.val
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
minpoly
DivisionRing.toRing
Ring.toIntAlgebra
rankOfDiscrBdd
—NumberField.to_charZero
rank_le_rankOfDiscrBdd
Polynomial.Monic.natDegree_map
Rat.nontrivial
minpoly.monic
NumberField.RingOfIntegers.isIntegral_coe
minpoly.isIntegrallyClosed_eq_field_fractions'
Int.instIsDomain
Rat.isFractionRing
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
instIsDomain
AddCommGroup.intIsScalarTower
Field.primitive_element_iff_minpoly_natDegree_eq
NumberField.to_finiteDimensional
rank_le_rankOfDiscrBdd 📖mathematicalabs
instLatticeInt
Int.instAddGroup
NumberField.discr
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
rankOfDiscrBdd
—NumberField.discr_ne_zero
abs_nonpos_iff
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
Nat.cast_zero
Nat.instAtLeastTwoHAddOfNat
lt_div_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_lt_iff₀'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
one_mul
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.pi_gt_three
NumberField.to_charZero
lt_or_ge
le_max_of_le_right
Nat.le_floor_iff
div_nonneg
Real.log_nonneg
mul_comm
mul_div_assoc
le_div_iff₀
div_le_iff₀
le_trans
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Nat.one_le_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instZeroLEOneClass
le_of_lt
NumberField.abs_discr_ge
Int.cast_le
NeZero.charZero_one
Mathlib.Tactic.Contrapose.contrapose₁
Real.rpow_natCast
lt_of_le_of_lt
Real.rpow_logb
lt_trans
zero_lt_one
ne_of_gt
mul_pos
div_pos
Nat.cast_pos'
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
mul_assoc
inv_div
inv_mul_cancel₀
Int.cast_natCast
le_refl
mul_lt_mul_of_pos_left
Real.rpow_lt_rpow_of_exponent_lt
Real.log_div_log
le_max_of_le_left

NumberField.mixedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
covolume_idealLattice 📖mathematical—ZLattice.covolume
mixedSpace
Prod.normedAddCommGroup
Pi.normedAddCommGroup
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.normedAddCommGroup
NumberField.InfinitePlace.IsComplex
Complex
Complex.instNormedAddCommGroup
Prod.instMeasurableSpace
MeasurableSpace.pi
Real.measurableSpace
Complex.measurableSpace
idealLattice
MeasureTheory.MeasureSpace.volume
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
Real.measureSpace
measureSpaceOfInnerProductSpace
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.borelSpace
Real.instMul
Real.instRatCast
DFunLike.coe
MonoidWithZeroHom
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
FractionalIdeal.commSemiring
Rat.semiring
MonoidWithZeroHom.funLike
FractionalIdeal.absNorm
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
CommRing.toRing
NumberField.RingOfIntegers.instIsNoetherianInt
NumberField.RingOfIntegers.instIsFractionRing
Units.val
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NumberField.InfinitePlace.nrComplexPlaces
Real.sqrt
abs
Real.lattice
Real.instAddGroup
Real.instIntCast
NumberField.discr
—NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Complex.instFiniteDimensionalReal
Complex.borelSpace
NumberField.RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
Nat.instAtLeastTwoHAddOfNat
NumberField.instFreeIntSubtypeMemSubmoduleRingOfIntegersCoeToSubmodule
ZLattice.covolume_eq_measure_fundamentalDomain
Module.Finite.prod
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
Real.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice
instIsZLatticeRealMixedSpaceIdealLattice
instIsAddHaarMeasureMixedSpaceVolume
fundamentalDomain_idealLattice
MeasureTheory.measureReal_def
volume_fundamentalDomain_fractionalIdealLatticeBasis
volume_fundamentalDomain_latticeBasis
ENNReal.toReal_mul
ENNReal.toReal_pow
ENNReal.toReal_inv
ENNReal.toReal_ofNat
ENNReal.coe_toReal
Real.coe_sqrt
coe_nnnorm
Int.norm_eq_abs
ENNReal.toReal_ofReal
Rat.cast_nonneg
Real.instIsStrictOrderedRing
FractionalIdeal.absNorm_nonneg
mul_assoc
covolume_integerLattice 📖mathematical—ZLattice.covolume
mixedSpace
Prod.normedAddCommGroup
Pi.normedAddCommGroup
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Real
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.normedAddCommGroup
NumberField.InfinitePlace.IsComplex
Complex
Complex.instNormedAddCommGroup
Prod.instMeasurableSpace
MeasurableSpace.pi
Real.measurableSpace
Complex.measurableSpace
integerLattice
MeasureTheory.MeasureSpace.volume
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
Real.measureSpace
measureSpaceOfInnerProductSpace
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.borelSpace
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NumberField.InfinitePlace.nrComplexPlaces
Real.sqrt
abs
Real.lattice
Real.instAddGroup
Real.instIntCast
NumberField.discr
—Complex.instFiniteDimensionalReal
Complex.borelSpace
Nat.instAtLeastTwoHAddOfNat
NumberField.RingOfIntegers.instFreeInt
ZLattice.covolume_eq_measure_fundamentalDomain
Module.Finite.prod
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
Real.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice
instIsZLatticeRealMixedSpaceIntegerLattice
instIsAddHaarMeasureMixedSpaceVolume
fundamentalDomain_integerLattice
MeasureTheory.measureReal_def
volume_fundamentalDomain_latticeBasis
ENNReal.toReal_mul
ENNReal.toReal_pow
ENNReal.toReal_inv
ENNReal.toReal_ofNat
ENNReal.coe_toReal
Real.coe_sqrt
coe_nnnorm
Int.norm_eq_abs
volume_fundamentalDomain_latticeBasis 📖mathematical—DFunLike.coe
MeasureTheory.Measure
mixedSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.Measure.prod.measureSpace
MeasureTheory.MeasureSpace.pi
NumberField.InfinitePlace
NumberField.InfinitePlace.IsReal
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real
Real.measureSpace
NumberField.InfinitePlace.IsComplex
Complex
measureSpaceOfInnerProductSpace
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Complex.measurableSpace
Complex.borelSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
MeasureTheory.MeasureSpace.volume
ZSpan.fundamentalDomain
Module.Free.ChooseBasisIndex
NumberField.RingOfIntegers
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NumberField.RingOfIntegers.instCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
CommRing.toRing
NumberField.RingOfIntegers.instFreeInt
Real.normedField
Prod.normedAddCommGroup
Pi.normedAddCommGroup
Real.normedAddCommGroup
Prod.normedSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Pi.normedSpace
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
NormedField.toNormedCommRing
Complex.instNormedField
latticeBasis
Real.linearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
ENNReal.instInv
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
NumberField.InfinitePlace.nrComplexPlaces
ENNReal.ofNNReal
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
NNReal.sqrt
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
Int.instNormedCommRing
NumberField.discr
—NumberField.RingOfIntegers.instFreeInt
invariantBasisNumber_of_nontrivial_of_commRing
Complex.instNontrivial
Finite.of_fintype
Complex.instCharZero
NumberField.to_charZero
Matrix.ext
Matrix.map_apply
RingHomInvPair.ids
Module.Basis.toMatrix_apply
Module.Basis.coe_reindex
Equiv.symm_symm
latticeBasis_apply
commMap_canonical_eq_mixed
Complex.ofRealHom_eq_coe
stdBasis_repr_eq_matrixToStdBasis_mul
Complex.instFiniteDimensionalReal
Complex.borelSpace
Nat.instAtLeastTwoHAddOfNat
ZSpan.fundamentalDomain_reindex
norm_toNNReal
ZSpan.measure_fundamentalDomain
Prod.borelSpace
Pi.borelSpace
Subtype.countable
Finite.to_countable
instSecondCountableTopologyReal
Real.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Complex.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
secondCountableTopologyEither_of_right
TopologicalSpace.instSecondCountableTopologyForallOfCountable
instIsAddHaarMeasureMixedSpaceVolume
volume_fundamentalDomain_stdBasis
mul_one
Complex.nnnorm_real
RingHom.map_det
RingHom.mapMatrix_apply
Matrix.det_mul
Matrix.det_transpose
Matrix.det_reindex_self
Complex.norm_I
Real.toNNReal_one
det_matrixToStdBasis
nnnorm_mul
NormedDivisionRing.toNormMulClass
nnnorm_pow
NormedDivisionRing.to_normOneClass
nnnorm_inv
ENNReal.coe_mul
ENNReal.coe_pow
RCLike.norm_two
Real.toNNReal_ofNat
ENNReal.coe_inv
two_ne_zero
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
ENNReal.coe_ofNat
NNReal.sqrt_sq
Algebra.discr_eq_det_embeddingsMatrixReindex_pow_two
NumberField.to_finiteDimensional
Complex.isAlgClosed
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
Rat.instCharZero
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
Algebra.discr_reindex
NumberField.coe_discr
map_intCast
RingHom.instRingHomClass
Complex.nnnorm_intCast

---

← Back to Index