discr π | CompOp | 39 mathmath: discr_eq_discr_of_ringEquiv, dedekindZeta_residue_def, natAbs_discr_eq_natAbs_discr_pow_mul_natAbs_discr_pow, abs_discr_ge', abs_discr_ge, discr_rat, IsCyclotomicExtension.Rat.absdiscr_prime_pow, natAbs_discr_eq_absNorm_differentIdeal_mul_natAbs_discr_pow, abs_discr_gt_two, IsCyclotomicExtension.Rat.discr, hermiteTheorem.finite_of_discr_bdd_of_isComplex, mixedEmbedding.covolume_idealLattice, discr_eq_discr, IsCyclotomicExtension.Rat.absdiscr_prime_pow_succ, Ideal.tendsto_norm_le_div_atTopβ, IsCyclotomicExtension.Rat.discr_prime_pow_succ, discr_eq_basisMatrix_det_sq, mixedEmbedding.covolume_integerLattice, discr_mem_differentIdeal, absNorm_differentIdeal, IsCyclotomicExtension.Rat.natAbs_discr, finite_of_discr_bdd, IsCyclotomicExtension.Rat.absdiscr_prime, IsCyclotomicExtension.Rat.discr_prime_pow, exists_ideal_in_class_of_norm_le, Ideal.tendsto_norm_le_div_atTop, exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, discr_dvd_discr, abs_discr_ge_of_isTotallyComplex, sign_discr, mixedEmbedding.volume_fundamentalDomain_latticeBasis, abs_discr_rpow_ge_of_isTotallyComplex, exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, discr_eq_discr_of_algEquiv, Ideal.tendsto_norm_le_and_mk_eq_div_atTop, coe_discr, IsCyclotomicExtension.Rat.discr_prime, Rat.numberField_discr, hermiteTheorem.finite_of_discr_bdd_of_isReal
|