Documentation Verification Report

Defs

πŸ“ Source: Mathlib/NumberTheory/NumberField/Discriminant/Defs.lean

Statistics

MetricCount
Definitionsdiscr
1
Theoremsdiscr_eq_discr_of_toMatrix_coeff_isIntegral, coe_discr, discr_eq_discr, discr_eq_discr_of_algEquiv, discr_eq_discr_of_ringEquiv, discr_ne_zero, discr_rat, numberField_discr
8
Total9

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
discr_eq_discr_of_toMatrix_coeff_isIntegral πŸ“–mathematicalIsIntegral
Int.instCommRing
DivisionRing.toRing
Rat.instDivisionRing
Ring.toIntAlgebra
Module.Basis.toMatrix
Rat.commSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
DFunLike.coe
Module.Basis
Rat.semiring
Module.Basis.instFunLike
discr
Rat.commRing
β€”NumberField.to_charZero
invariantBasisNumber_of_nontrivial_of_commRing
Rat.nontrivial
RingHomInvPair.ids
Module.Basis.coe_reindex
Module.Basis.toMatrix_map_vecMul
discr_of_matrix_vecMul
one_mul
discr_reindex
IsIntegral.det
IsIntegrallyClosed.isIntegral_iff
Rat.isFractionRing
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
Int.instIsDomain
EuclideanDomain.to_principal_ideal_domain
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Matrix.det_mul
Module.Basis.toMatrix_mul_toMatrix_flip
Matrix.det_one
IsFractionRing.injective
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Int.isUnit_iff
eq_intCast
Int.cast_one
one_pow
Int.cast_neg
Even.neg_pow
Nat.instAtLeastTwoHAddOfNat

NumberField

Definitions

NameCategoryTheorems
discr πŸ“–CompOp
39 mathmath: discr_eq_discr_of_ringEquiv, dedekindZeta_residue_def, natAbs_discr_eq_natAbs_discr_pow_mul_natAbs_discr_pow, abs_discr_ge', abs_discr_ge, discr_rat, IsCyclotomicExtension.Rat.absdiscr_prime_pow, natAbs_discr_eq_absNorm_differentIdeal_mul_natAbs_discr_pow, abs_discr_gt_two, IsCyclotomicExtension.Rat.discr, hermiteTheorem.finite_of_discr_bdd_of_isComplex, mixedEmbedding.covolume_idealLattice, discr_eq_discr, IsCyclotomicExtension.Rat.absdiscr_prime_pow_succ, Ideal.tendsto_norm_le_div_atTopβ‚€, IsCyclotomicExtension.Rat.discr_prime_pow_succ, discr_eq_basisMatrix_det_sq, mixedEmbedding.covolume_integerLattice, discr_mem_differentIdeal, absNorm_differentIdeal, IsCyclotomicExtension.Rat.natAbs_discr, finite_of_discr_bdd, IsCyclotomicExtension.Rat.absdiscr_prime, IsCyclotomicExtension.Rat.discr_prime_pow, exists_ideal_in_class_of_norm_le, Ideal.tendsto_norm_le_div_atTop, exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, discr_dvd_discr, abs_discr_ge_of_isTotallyComplex, sign_discr, mixedEmbedding.volume_fundamentalDomain_latticeBasis, abs_discr_rpow_ge_of_isTotallyComplex, exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, discr_eq_discr_of_algEquiv, Ideal.tendsto_norm_le_and_mk_eq_div_atTop, coe_discr, IsCyclotomicExtension.Rat.discr_prime, Rat.numberField_discr, hermiteTheorem.finite_of_discr_bdd_of_isReal

Theorems

NameKindAssumesProvesValidatesDepends On
coe_discr πŸ“–mathematicalβ€”discr
Algebra.discr
Module.Free.ChooseBasisIndex
RingOfIntegers
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingOfIntegers.instCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
CommRing.toRing
RingOfIntegers.instFreeInt
Module.Free.instDecidableEqChooseBasisIndex
Rat.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Module.Free.ChooseBasisIndex.fintype
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
DFunLike.coe
Module.Basis
Rat.semiring
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.Basis.instFunLike
integralBasis
β€”RingOfIntegers.instFreeInt
to_charZero
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
Rat.isFractionRing
AddCommGroup.intIsScalarTower
RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors
Algebra.discr_localizationLocalization
discr_eq_discr πŸ“–mathematicalβ€”Algebra.discr
RingOfIntegers
Int.instCommRing
RingOfIntegers.instCommRing
Ring.toIntAlgebra
CommRing.toRing
DFunLike.coe
Module.Basis
Int.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toIntModule
Ring.toAddCommGroup
Module.Basis.instFunLike
discr
β€”RingOfIntegers.instFreeInt
invariantBasisNumber_of_nontrivial_of_commRing
Int.instNontrivial
Algebra.discr_eq_discr
Module.Basis.coe_reindex
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
Algebra.discr_reindex
discr_eq_discr_of_algEquiv πŸ“–mathematicalβ€”discrβ€”to_charZero
RingHomInvPair.ids
AddCommGroup.intIsScalarTower
RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
coe_discr
Algebra.discr_eq_discr_of_algEquiv
discr_eq_discr
Rat.isFractionRing
RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors
Algebra.discr_localizationLocalization
integralBasis_apply
Module.Basis.localizationLocalization_apply
discr_eq_discr_of_ringEquiv πŸ“–mathematicalβ€”discrβ€”discr_eq_discr_of_algEquiv
to_charZero
eq_ratCast
RingHom.instRingHomClass
map_ratCast
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
discr_ne_zero πŸ“–β€”β€”β€”β€”Int.cast_injective
Rat.instCharZero
RingOfIntegers.instFreeInt
to_charZero
Module.IsNoetherian.finite
RingOfIntegers.instIsNoetherianInt
coe_discr
Algebra.discr_not_zero_of_basis
to_finiteDimensional
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
discr_rat πŸ“–mathematicalβ€”discr
Rat.instField
Rat.numberField
β€”Rat.numberField_discr

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
numberField_discr πŸ“–mathematicalβ€”NumberField.discr
instField
numberField
β€”RingHomInvPair.ids
numberField
NumberField.discr_eq_discr
Algebra.discr_def
Matrix.det_unique
Algebra.traceMatrix_apply
Algebra.traceForm_apply
Module.Basis.map_apply
RingEquivClass.toAddEquivClass
RingEquiv.instRingEquivClass
RingEquiv.toAddEquiv_eq_coe
AddEquiv.toIntLinearEquiv_symm
AddEquiv.coe_toIntLinearEquiv
Module.Basis.singleton_apply
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
mul_one
Algebra.trace_eq_matrix_trace
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Matrix.trace_one
Fintype.card_unique
Nat.cast_one

---

← Back to Index