| Name | Category | Theorems |
embedding π | CompOp | 15 mathmath: NumberField.prod_nonarchAbsVal_eq, mk_apply, norm_def', embedding_apply, norm_embedding_eq, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, norm_lt_one_iff_mem, NumberField.isFinitePlace_iff, coe_apply, norm_def_int, norm_eq_one_iff_notMem, isFinitePlace, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, norm_le_one, norm_def
|
equivHeightOneSpectrum π | CompOp | 1 mathmath: IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply
|
instFunLikeReal π | CompOp | 16 mathmath: mk_apply, mulSupport_finite, prod_eq_inv_abs_norm, NumberField.prod_abs_eq_one, prod_eq_inv_abs_norm_int, norm_embedding_eq, NumberField.mulHeight_eq, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, add_le, instNonnegHomClassReal, mulSupport_finite_int, coe_apply, pos_iff, instMonoidWithZeroHomClassReal, instNonarchimedeanHomClassReal, NumberField.mulHeightβ_eq
|
maximalIdeal π | CompOp | 5 mathmath: norm_embedding_eq, maximalIdeal_injective, mk_maximalIdeal, maximalIdeal_inj, maximalIdeal_mk
|
mk π | CompOp | β |