Documentation Verification Report

FinitePlaces

πŸ“ Source: Mathlib/NumberTheory/NumberField/FinitePlaces.lean

Statistics

MetricCount
DefinitionsFinitePlace, embedding, equivHeightOneSpectrum, instFunLikeReal, maximalIdeal, mk, IsFinitePlace, adicAbv, instNormedFieldValuedAdicCompletion, instRankOneValuedAdicCompletion, instRankOneWithZeroMultiplicativeIntValuationRingOfIntegers
11
Theoremsembedding_mul_absNorm, equivHeightOneSpectrum_symm_apply, add_le, coe_apply, embedding_apply, instMonoidWithZeroHomClassReal, instNonarchimedeanHomClassReal, instNonnegHomClassReal, isFinitePlace, maximalIdeal_inj, maximalIdeal_injective, maximalIdeal_mk, mk_apply, mk_eq_iff, mk_maximalIdeal, mulSupport_finite, mulSupport_finite_int, norm_def, norm_def', norm_def_int, norm_embedding_eq, norm_eq_one_iff_notMem, norm_le_one, norm_lt_one_iff_mem, pos_iff, absNorm_ne_zero, adicAbv_add_le_max, adicAbv_def, adicAbv_intCast_le_one, adicAbv_natCast_le_one, isNonarchimedean_adicAbv, one_lt_absNorm, one_lt_absNorm_nnreal, isFinitePlace_iff, toNNReal_valued_eq_adicAbv, instIsDiscreteValuationRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, instIsDiscreteValuationRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation, instIsPrincipalIdealRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, instIsPrincipalIdealRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation
39
Total50

IsDedekindDomain.HeightOneSpectrum

Theorems

NameKindAssumesProvesValidatesDepends On
embedding_mul_absNorm πŸ“–mathematicalβ€”Real
Real.instMul
Norm.norm
adicCompletion
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
DFunLike.coe
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
NumberField.FinitePlace.embedding
NumberField.RingOfIntegers.val
Real.instNatCast
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
maxPowDividing
Ideal.span
Set
Set.instSingletonSet
Real.instOne
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
Ideal.uniqueFactorizationMonoid
maxPowDividing.eq_1
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Nat.cast_pow
NumberField.FinitePlace.norm_def
NumberField.RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def
Valuation.ne_zero_iff
WithZero.instNontrivial
NumberField.RingOfIntegers.coe_ne_zero_iff
WithZeroMulInt.toNNReal_neg_apply
NNReal.coe_natCast
zpow_natCast
zpow_addβ‚€
Nat.cast_zero
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
RCLike.charZero_rclike
LT.lt.ne'
LT.lt.trans
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm_nnreal
Nat.cast_one
zpow_eq_one_iff_rightβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
WithZero.unzero.congr_simp
valuation_of_algebraMap
intValuation_if_neg
Associates.count.congr_simp
neg_add_cancel
equivHeightOneSpectrum_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
NumberField.FinitePlace
Real
NumberField.FinitePlace.instFunLikeReal
Equiv
IsDedekindDomain.HeightOneSpectrum
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
NumberField.FinitePlace.equivHeightOneSpectrum
Norm.norm
adicCompletion
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
NumberField.FinitePlace.embedding
β€”β€”

NumberField

Definitions

NameCategoryTheorems
FinitePlace πŸ“–CompOp
18 mathmath: prod_nonarchAbsVal_eq, FinitePlace.mk_apply, FinitePlace.mulSupport_finite, FinitePlace.prod_eq_inv_abs_norm, prod_abs_eq_one, FinitePlace.prod_eq_inv_abs_norm_int, FinitePlace.norm_embedding_eq, mulHeight_eq, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, FinitePlace.maximalIdeal_injective, FinitePlace.add_le, FinitePlace.instNonnegHomClassReal, FinitePlace.mulSupport_finite_int, FinitePlace.coe_apply, FinitePlace.pos_iff, FinitePlace.instMonoidWithZeroHomClassReal, FinitePlace.instNonarchimedeanHomClassReal, mulHeight₁_eq
IsFinitePlace πŸ“–MathDef
2 mathmath: isFinitePlace_iff, FinitePlace.isFinitePlace
instNormedFieldValuedAdicCompletion πŸ“–CompOp
14 mathmath: prod_nonarchAbsVal_eq, FinitePlace.mk_apply, FinitePlace.norm_def', FinitePlace.norm_embedding_eq, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, FinitePlace.norm_lt_one_iff_mem, isFinitePlace_iff, FinitePlace.coe_apply, FinitePlace.norm_def_int, FinitePlace.norm_eq_one_iff_notMem, FinitePlace.isFinitePlace, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, FinitePlace.norm_le_one, FinitePlace.norm_def
instRankOneValuedAdicCompletion πŸ“–CompOpβ€”
instRankOneWithZeroMultiplicativeIntValuationRingOfIntegers πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isFinitePlace_iff πŸ“–mathematicalβ€”IsFinitePlace
AbsoluteValue
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
IsDedekindDomain.HeightOneSpectrum
RingOfIntegers
RingOfIntegers.instCommRing
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
IsDedekindDomain.HeightOneSpectrum.valuation
RingOfIntegers.instIsDedekindDomain
RingOfIntegers.instAlgebra_1
Algebra.id
Semifield.toCommSemiring
RingOfIntegers.instIsFractionRing
WithVal.instField
place
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NormedField.toNormedDivisionRing
instNormedFieldValuedAdicCompletion
FinitePlace.embedding
β€”RingOfIntegers.instIsDedekindDomain
RingOfIntegers.instIsFractionRing
FinitePlace.isFinitePlace
toNNReal_valued_eq_adicAbv πŸ“–mathematicalβ€”NNReal.toReal
DFunLike.coe
MonoidWithZeroHom
WithZero
Multiplicative
NNReal
WithZero.instMulZeroOneClass
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiringNNReal
MonoidWithZeroHom.funLike
WithZeroMulInt.toNNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Ideal
RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
RingOfIntegers.instCommRing
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
Ideal.absNorm
RingOfIntegers.instNontrivial
RingOfIntegers.instIsDedekindDomain
RingOfIntegers.instFreeInt
IsDedekindDomain.HeightOneSpectrum.asIdeal
RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero
Valuation
WithVal
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
DivisionRing.toRing
Field.toDivisionRing
IsDedekindDomain.HeightOneSpectrum.valuation
RingOfIntegers.instAlgebra_1
Semifield.toCommSemiring
Field.toSemifield
RingOfIntegers.instIsFractionRing
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithVal.instRing
Valuation.instFunLike
Valued.v
WithVal.instValued
AbsoluteValue
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
RingOfIntegers.HeightOneSpectrum.adicAbv
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
RingOfIntegers.instIsDedekindDomain
RingOfIntegers.instIsFractionRing
RingOfIntegers.instNontrivial
RingOfIntegers.instFreeInt
RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero

NumberField.FinitePlace

Definitions

NameCategoryTheorems
embedding πŸ“–CompOp
15 mathmath: NumberField.prod_nonarchAbsVal_eq, mk_apply, norm_def', embedding_apply, norm_embedding_eq, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, norm_lt_one_iff_mem, NumberField.isFinitePlace_iff, coe_apply, norm_def_int, norm_eq_one_iff_notMem, isFinitePlace, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, norm_le_one, norm_def
equivHeightOneSpectrum πŸ“–CompOp
1 mathmath: IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply
instFunLikeReal πŸ“–CompOp
16 mathmath: mk_apply, mulSupport_finite, prod_eq_inv_abs_norm, NumberField.prod_abs_eq_one, prod_eq_inv_abs_norm_int, norm_embedding_eq, NumberField.mulHeight_eq, IsDedekindDomain.HeightOneSpectrum.equivHeightOneSpectrum_symm_apply, add_le, instNonnegHomClassReal, mulSupport_finite_int, coe_apply, pos_iff, instMonoidWithZeroHomClassReal, instNonarchimedeanHomClassReal, NumberField.mulHeight₁_eq
maximalIdeal πŸ“–CompOp
5 mathmath: norm_embedding_eq, maximalIdeal_injective, mk_maximalIdeal, maximalIdeal_inj, maximalIdeal_mk
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_le πŸ“–mathematicalβ€”Real
Real.instLE
DFunLike.coe
NumberField.FinitePlace
instFunLikeReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Real.instMax
β€”NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Subtype.prop
NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_add_le_max
coe_apply πŸ“–mathematicalβ€”DFunLike.coe
NumberField.FinitePlace
Real
instFunLikeReal
AbsoluteValue
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
IsDedekindDomain.HeightOneSpectrum
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
IsDedekindDomain.HeightOneSpectrum.valuation
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
Algebra.id
Semifield.toCommSemiring
NumberField.RingOfIntegers.instIsFractionRing
WithVal.instField
NumberField.place
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NormedField.toNormedDivisionRing
NumberField.instNormedFieldValuedAdicCompletion
embedding
β€”β€”
embedding_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
DivisionRing.toRing
Field.toDivisionRing
IsDedekindDomain.HeightOneSpectrum.valuation
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
IsDedekindDomain.HeightOneSpectrum.adicCompletion
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
embedding
UniformSpace.Completion.coe'
β€”NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
instMonoidWithZeroHomClassReal πŸ“–mathematicalβ€”MonoidWithZeroHomClass
NumberField.FinitePlace
Real
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
instFunLikeReal
β€”AbsoluteValue.map_mul
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
AbsoluteValue.map_one
Real.instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
AbsoluteValue.map_zero
instNonarchimedeanHomClassReal πŸ“–mathematicalβ€”NonarchimedeanHomClass
NumberField.FinitePlace
Real
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Real.linearOrder
instFunLikeReal
β€”add_le
instNonnegHomClassReal πŸ“–mathematicalβ€”NonnegHomClass
NumberField.FinitePlace
Real
Real.instZero
Real.instLE
instFunLikeReal
β€”AbsoluteValue.nonneg
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
isFinitePlace πŸ“–mathematicalβ€”NumberField.IsFinitePlace
AbsoluteValue
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
IsDedekindDomain.HeightOneSpectrum
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
IsDedekindDomain.HeightOneSpectrum.valuation
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
Algebra.id
Semifield.toCommSemiring
NumberField.RingOfIntegers.instIsFractionRing
WithVal.instField
NumberField.place
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NormedField.toNormedDivisionRing
NumberField.instNormedFieldValuedAdicCompletion
embedding
β€”Subtype.prop
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
maximalIdeal_inj πŸ“–mathematicalβ€”maximalIdealβ€”Equiv.injective
maximalIdeal_injective πŸ“–mathematicalβ€”NumberField.FinitePlace
IsDedekindDomain.HeightOneSpectrum
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
maximalIdeal
β€”Equiv.injective
maximalIdeal_mk πŸ“–mathematicalβ€”maximalIdealβ€”mk_eq_iff
mk_maximalIdeal
mk_apply πŸ“–mathematicalβ€”DFunLike.coe
NumberField.FinitePlace
Real
instFunLikeReal
Norm.norm
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
embedding
β€”β€”
mk_eq_iff πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
DFunLike.ne_iff
IsDedekindDomain.HeightOneSpectrum.ext_iff
Ideal.IsMaximal.eq_of_le
IsDedekindDomain.HeightOneSpectrum.isMaximal
NumberField.RingOfIntegers.instIsDedekindDomain
Ideal.IsPrime.ne_top'
IsDedekindDomain.HeightOneSpectrum.isPrime
Mathlib.Tactic.Push.not_and_eq
NumberField.RingOfIntegers.instIsFractionRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
norm_lt_one_iff_mem
neg_eq_zero
sub_eq_zero_of_eq
norm_eq_one_iff_notMem
mk_maximalIdeal πŸ“–mathematicalβ€”maximalIdealβ€”NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
mulSupport_finite πŸ“–mathematicalβ€”Set.Finite
NumberField.FinitePlace
Function.mulSupport
Real
Real.instOne
DFunLike.coe
instFunLikeReal
β€”IsFractionRing.div_surjective
NumberField.RingOfIntegers.instIsFractionRing
map_divβ‚€
instMonoidWithZeroHomClassReal
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
NumberField.RingOfIntegers.instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
NumberField.RingOfIntegers.instIsTorsionFree_2
Set.Finite.subset
Set.Finite.union
mulSupport_finite_int
Mathlib.Tactic.Contrapose.contraposeβ‚‚
div_self
NeZero.charZero_one
RCLike.charZero_rclike
mulSupport_finite_int πŸ“–mathematicalβ€”Set.Finite
NumberField.FinitePlace
Function.mulSupport
Real
Real.instOne
DFunLike.coe
instFunLikeReal
NumberField.RingOfIntegers.val
β€”ne_iff_lt_iff_le
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
norm_le_one
norm_embedding_eq
IsScalarTower.right
NumberField.RingOfIntegers.instIsDedekindDomainWithVal
Ideal.finite_factors
Function.Injective.injOn
maximalIdeal_injective
Set.Finite.of_finite_image
Set.Finite.subset
Set.instReflSubset
norm_def πŸ“–mathematicalβ€”Norm.norm
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
DFunLike.coe
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
embedding
AbsoluteValue
Real
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
NumberField.RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Valued.valuedCompletion_apply
norm_def' πŸ“–mathematicalβ€”Norm.norm
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
DFunLike.coe
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
embedding
NNReal.toReal
MonoidWithZeroHom
NNReal
WithZero.instMulZeroOneClass
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
NonAssocSemiring.toMulZeroOneClass
instSemiringNNReal
MonoidWithZeroHom.funLike
WithZeroMulInt.toNNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Nat.instMulZeroOneClass
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
IsDedekindDomain.HeightOneSpectrum.asIdeal
NumberField.RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero
Valuation
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
Valuation.instFunLike
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
NumberField.RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
norm_def
NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def
norm_def_int πŸ“–mathematicalβ€”Norm.norm
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
DFunLike.coe
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
embedding
NumberField.RingOfIntegers.val
NNReal.toReal
MonoidWithZeroHom
NNReal
WithZero.instMulZeroOneClass
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
NonAssocSemiring.toMulZeroOneClass
instSemiringNNReal
MonoidWithZeroHom.funLike
WithZeroMulInt.toNNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Nat.instMulZeroOneClass
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
IsDedekindDomain.HeightOneSpectrum.asIdeal
NumberField.RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero
Valuation
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.intValuation
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
NumberField.RingOfIntegers.HeightOneSpectrum.absNorm_ne_zero
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
norm_def
NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def
IsDedekindDomain.HeightOneSpectrum.valuation_of_algebraMap
norm_embedding_eq πŸ“–mathematicalβ€”Norm.norm
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
maximalIdeal
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
DFunLike.coe
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
embedding
NumberField.FinitePlace
Real
instFunLikeReal
β€”NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
mk_maximalIdeal
mk_apply
norm_eq_one_iff_notMem πŸ“–mathematicalβ€”Norm.norm
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
DFunLike.coe
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
embedding
NumberField.RingOfIntegers.val
Real
Real.instOne
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
norm_def
IsDedekindDomain.HeightOneSpectrum.adicAbv_coe_eq_one_iff
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm_nnreal
norm_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
DFunLike.coe
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
embedding
NumberField.RingOfIntegers.val
Real.instOne
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
norm_def
IsDedekindDomain.HeightOneSpectrum.adicAbv_coe_le_one
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm_nnreal
norm_lt_one_iff_mem πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
IsDedekindDomain.HeightOneSpectrum.adicCompletion
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
NumberField.RingOfIntegers.instIsFractionRing
NormedField.toNorm
NumberField.instNormedFieldValuedAdicCompletion
DFunLike.coe
RingHom
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithVal.instField
UniformSpace.Completion.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
embedding
NumberField.RingOfIntegers.val
Real.instOne
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
norm_def
IsDedekindDomain.HeightOneSpectrum.adicAbv_coe_lt_one_iff
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm_nnreal
pos_iff πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
DFunLike.coe
NumberField.FinitePlace
instFunLikeReal
β€”AbsoluteValue.pos_iff
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing

NumberField.RingOfIntegers.HeightOneSpectrum

Definitions

NameCategoryTheorems
adicAbv πŸ“–CompOp
7 mathmath: adicAbv_intCast_le_one, adicAbv_natCast_le_one, adicAbv_def, isNonarchimedean_adicAbv, NumberField.toNNReal_valued_eq_adicAbv, adicAbv_add_le_max, NumberField.FinitePlace.norm_def

Theorems

NameKindAssumesProvesValidatesDepends On
absNorm_ne_zero πŸ“–β€”β€”β€”β€”ne_zero_of_lt
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
one_lt_absNorm_nnreal
adicAbv_add_le_max πŸ“–mathematicalβ€”Real
Real.instLE
DFunLike.coe
AbsoluteValue
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
adicAbv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Real.instMax
β€”isNonarchimedean_adicAbv
adicAbv_def πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
adicAbv
NNReal.toReal
MonoidWithZeroHom
WithZero
Multiplicative
NNReal
WithZero.instMulZeroOneClass
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Int.instAddMonoid
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiringNNReal
MonoidWithZeroHom.funLike
WithZeroMulInt.toNNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
IsDedekindDomain.HeightOneSpectrum.asIdeal
absNorm_ne_zero
Valuation
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.valuation
NumberField.RingOfIntegers.instAlgebra_1
Semifield.toCommSemiring
NumberField.RingOfIntegers.instIsFractionRing
β€”β€”
adicAbv_intCast_le_one πŸ“–mathematicalβ€”Real
Real.instLE
DFunLike.coe
AbsoluteValue
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
adicAbv
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Real.instOne
β€”IsNonarchimedean.apply_intCast_le_one_of_isNonarchimedean
Real.instIsStrictOrderedRing
MulRingSeminormClass.toAddGroupSeminormClass
MulRingNormClass.toMulRingSeminormClass
AbsoluteValue.instMulRingNormClassOfNontrivialOfIsDomain
Real.instIsOrderedRing
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
Real.instIsDomain
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
isNonarchimedean_adicAbv
adicAbv_natCast_le_one πŸ“–mathematicalβ€”Real
Real.instLE
DFunLike.coe
AbsoluteValue
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
adicAbv
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Real.instOne
β€”IsNonarchimedean.apply_natCast_le_one_of_isNonarchimedean
AbsoluteValue.zeroHomClass
AbsoluteValue.nonnegHomClass
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
Real.instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
isNonarchimedean_adicAbv
isNonarchimedean_adicAbv πŸ“–mathematicalβ€”IsNonarchimedean
Real
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
AbsoluteValue
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
adicAbv
β€”IsDedekindDomain.HeightOneSpectrum.isNonarchimedean_adicAbv
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
one_lt_absNorm_nnreal
one_lt_absNorm πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Ideal.IsPrime.ne_top
IsDedekindDomain.HeightOneSpectrum.isPrime
Ideal.absNorm_eq_one_iff
Ideal.absNorm_ne_zero_iff
Ideal.finiteQuotientOfFreeOfNeBot
NumberField.RingOfIntegers.instIsDomain
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
IsDedekindDomain.HeightOneSpectrum.ne_bot
one_lt_absNorm_nnreal πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
DFunLike.coe
MonoidWithZeroHom
Ideal
NumberField.RingOfIntegers
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
IsDedekindDomain.HeightOneSpectrum.asIdeal
β€”NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.instFreeInt
Nat.cast_one
NNReal.addLeftMono
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
one_lt_absNorm

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instIsDiscreteValuationRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers πŸ“–mathematicalβ€”IsDiscreteValuationRing
IsDedekindDomain.HeightOneSpectrum.adicCompletion
ValuationSubring
UniformSpace.Completion.instField
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
IsDedekindDomain.HeightOneSpectrum.valuation
WithVal.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
SetLike.instMembership
ValuationSubring.instSetLike
IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers
ValuationSubring.instCommRingSubtypeMem
ValuationSubring.instIsDomainSubtypeMem
β€”Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
ValuationSubring.instIsDomainSubtypeMem
instIsPrincipalIdealRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers
ValuationSubring.isLocalRing
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsDedekindDomain.HeightOneSpectrum.valuation_exists_uniformizer
IsTopologicalDivisionRing.toIsTopologicalRing
Valued.valuedCompletion_apply
Int.instAddLeftMono
Int.instZeroLEOneClass
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
MonoidWithZeroHom.map_eq_zero_iff
WithZero.instNontrivial
instIsDiscreteValuationRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation πŸ“–mathematicalβ€”IsDiscreteValuationRing
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Valuation.integer
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
Subring.toCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subring.instIsDomainSubtypeMem
instIsDomain
Field.toSemifield
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
Subring.instIsDomainSubtypeMem
instIsDomain
instIsPrincipalIdealRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation
ValuationRing.isLocalRing
Subring.instNontrivialSubtypeMem
IsLocalRing.toNontrivial
Field.instIsLocalRing
ValuationRing.toPreValuationRing
ValuationRing.instValuationRingInteger
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsDedekindDomain.HeightOneSpectrum.valuation_exists_uniformizer
Int.instZeroLEOneClass
MonoidWithZeroHom.map_eq_zero_iff
WithZero.instNontrivial
Int.instAddLeftMono
instIsPrincipalIdealRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers πŸ“–mathematicalβ€”IsPrincipalIdealRing
IsDedekindDomain.HeightOneSpectrum.adicCompletion
ValuationSubring
UniformSpace.Completion.instField
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
IsDedekindDomain.HeightOneSpectrum.valuation
WithVal.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
SetLike.instMembership
ValuationSubring.instSetLike
IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
UniformSpace.Completion.ring
IsTopologicalDivisionRing.toIsTopologicalRing
UniformSpace.toTopologicalSpace
ValuationSubring.instSubringClass
β€”Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
SubringClass.toSubsemiringClass
IsTopologicalDivisionRing.toIsTopologicalRing
ValuationSubring.instSubringClass
Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered
SubmonoidClass.instMulArchimedean
WithZero.instMulArchimedean
Multiplicative.instMulArchimedean
instArchimedeanInt
MonoidWithZeroHomClass.toMonoidHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
Valuation.valuationSubring.integers
WithZero.denselyOrdered_set_iff_subsingleton
MonoidWithZeroHom.range_nontrivial
WithZero.instNontrivial
instIsPrincipalIdealRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation πŸ“–mathematicalβ€”IsPrincipalIdealRing
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Valuation.integer
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
IsDedekindDomain.HeightOneSpectrum.valuation
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
Subring.instSubringClass
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
SubringClass.toSubsemiringClass
Subring.instSubringClass
Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered
SubmonoidClass.instMulArchimedean
WithZero.instMulArchimedean
Multiplicative.instMulArchimedean
instArchimedeanInt
MonoidWithZeroHomClass.toMonoidHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
Valuation.integer.integers
WithZero.denselyOrdered_set_iff_subsingleton
MonoidWithZeroHom.range_nontrivial
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
WithZero.instNontrivial

---

← Back to Index