Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/NumberField/InfinitePlace/Basic.lean

Statistics

MetricCount
DefinitionsInfinitePlace, IsComplex, IsReal, fintype, embedding, embedding_of_isReal, instFunLikeReal, mk, mkComplex, mkReal, mult, nrComplexPlaces, nrRealPlaces, IsInfinitePlace, infinitePlace
15
Theoremsconjugate_sign, nrRealPlaces_eq_zero_of_two_lt, apply, card_add_two_mul_card_eq_rank, card_complex_embeddings, card_eq_nrRealPlaces_add_nrComplexPlaces, card_filter_mk_eq, card_real_embeddings, coe_apply, conjugate_embedding_eq_of_isReal, conjugate_embedding_injective, denseRange_algebraMap_pi, disjoint_isReal_isComplex, embedding_inj, embedding_injective, embedding_mk_eq, embedding_mk_eq_of_isReal, embedding_of_isReal_apply, eq_iff_eq, eq_iff_isEquiv, eq_of_embedding_eq_conjugate, eq_one_of_rpow_eq, ext, ext_iff, instMonoidWithZeroHomClassReal, instNonnegHomClassReal, isComplex_iff, isComplex_mk_iff, isInfinitePlace, isNontrivial, isReal_iff, isReal_mk_iff, isReal_of_mk_isReal, isReal_or_isComplex, le_iff_le, map_intCast, map_natCast, map_ratCast, mkComplex_coe, mkReal_coe, mk_conjugate_eq, mk_embedding, mk_eq_iff, mult_coe_ne_zero, mult_isComplex, mult_isReal, mult_ne_zero, mult_pos, ne_of_isReal_isComplex, norm_embedding_eq, norm_embedding_of_isReal, not_isComplex_iff_isReal, not_isReal_iff_isComplex, not_isReal_of_mk_isComplex, nrComplexPlaces_eq_zero_of_finrank_eq_one, nrRealPlaces_eq_one_of_finrank_eq_one, nrRealPlaces_pos_of_odd_finrank, one_le_mult, one_le_of_lt_one, pos_iff, prod_eq_abs_norm, prod_eq_prod_mul_prod, sum_eq_sum_add_sum, sum_mult_eq, adjoin_eq_top_of_infinitePlace_lt, instNonemptyInfinitePlaceOfRingHomComplex, isInfinitePlace_iff, is_primitive_element_of_infinitePlace_lt, infinitePlace_apply, instSubsingletonInfinitePlace, isReal_infinitePlace
71
Total86

NumberField

Definitions

NameCategoryTheorems
InfinitePlace πŸ“–CompOp
349 mathmath: InfinitePlace.mult_isComplex, mixedEmbedding.integral_comp_polarSpaceCoord_symm, mixedEmbedding.fundamentalCone.expMapBasis_apply', mixedEmbedding.fundamentalDomain_integerLattice, mixedEmbedding.normAtComplexPlaces_mixedSpaceOfRealSpace, mixedEmbedding.logMap_one, mixedEmbedding.lintegral_comp_polarCoord_symm, InfinitePlace.norm_embedding_of_isReal, mixedEmbedding.fundamentalCone.interior_paramSet, mixedEmbedding.measurable_polarCoordReal_symm, Units.finrank_eq_rank, InfinitePlace.sum_mult_eq, mixedEmbedding.norm_eq_sup'_normAtPlace, Units.logEmbedding_fundSystem, mixedEmbedding.convexBodyLT'_mem, mixedEmbedding.fundamentalCone.realSpaceToLogSpace_completeFamily_of_ne, InfinitePlace.le_iff_le, mixedEmbedding.convexBodySumFun_add_le, InfinitePlace.nat_card_stabilizer_eq_one_or_two, InfinitePlace.isUnramified_iff_card_stabilizer_eq_one, IsCMField.equivInfinitePlace_symm_apply, instNonemptyInfinitePlaceOfRingHomComplex, mixedEmbedding.normAtAllPlaces_apply, mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst, mixedEmbedding.normAtPlace_polarCoord_symm_of_isComplex, mixedEmbedding.fundamentalCone.abs_det_completeBasis_equivFunL_symm, mixedEmbedding.norm_unit_smul, mixedEmbedding.norm_eq_norm, mixedEmbedding.norm_le_convexBodySumFun, mixedEmbedding.mem_idealLattice, mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, Units.regOfFamily_eq_det, InfinitePlace.exists_smul_eq_of_comap_eq, Units.dirichletUnitTheorem.seq_decreasing, mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume, InfinitePlace.card_mono, mixedEmbedding.fundamentalCone.compactSet_eq_union_aux₁, mixedEmbedding.polarCoordReal_apply, InfinitePlace.IsUnramified.stabilizer_eq_bot, mixedEmbedding.commMap_apply_of_isComplex, Units.pos_at_place, InfinitePlace.Completion.norm_coe, InfinitePlace.comap_apply, mixedEmbedding.instNoAtomsMixedSpaceVolume, prod_abs_eq_one, InfinitePlace.card_stabilizer, mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, mixedEmbedding.convexBodyLT_volume, InfinitePlace.smul_apply, mixedEmbedding.polarSpaceCoord_target, mixedEmbedding.negAt_apply_snd, Units.dirichletUnitTheorem.seq_next, mixedEmbedding.convexBodyLT_mem, InfinitePlace.coe_apply, ComplexEmbedding.IsConj.coe_stabilizer_mk, mixedEmbedding.convexBodySumFun_apply', mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, InfinitePlace.comp_of_comap_eq, mixedEmbedding.fundamentalCone.expMap_target, mixedEmbedding.convexBodySum_neg_mem, mixedEmbedding.negAt_preimage, mixedEmbedding.fundamentalCone.volume_frontier_normLeOne, mixedEmbedding.iUnion_negAt_plusPart_ae, mixedEmbedding.normAtPlace_apply_of_isReal, mixedEmbedding.exists_primitive_element_lt_of_isComplex, mixedEmbedding.stdBasis_apply_isComplex_snd, mixedEmbedding.fundamentalCone.isCompact_compactSet, mixedEmbedding.negAt_signSet_apply_isComplex, mixedEmbedding.fundamentalCone.volume_interior_eq_volume_closure, InfinitePlace.conjugate_embedding_injective, InfinitePlace.norm_embedding_eq, mixedEmbedding.fundamentalCone.smul_mem_of_mem, mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, mixedEmbedding.convexBodySum_volume_eq_zero_of_le_zero, mixedEmbedding.normAtComplexPlaces_polarSpaceCoord_symm, InfinitePlace.mkReal_coe, mixedEmbedding.fundamentalCone.logMap_expMapBasis, InfinitePlace.smul_eq_comap, InfinitePlace.smul_mk, Units.instZLattice_unitLattice, InfiniteAdeleRing.mixedEmbedding_eq_algebraMap_comp, mulHeight_eq, mixedEmbedding.convexBodySum_compact, Units.span_basisOfIsMaxRank, mixedEmbedding.fundamentalCone.norm_pos_of_mem, Units.logEmbeddingQuot_apply, InfinitePlace.pos_iff, Units.basisOfIsMaxRank_apply, mixedEmbedding.fundamentalCone.subset_interior_normLeOne, mixedEmbedding.negAt_signSet_apply_isReal, Units.regulator_eq_det, mixedEmbedding.fundamentalDomain_idealLattice, InfinitePlace.card_filter_mk_eq, mixedEmbedding.fundamentalCone.realSpaceToLogSpace_completeFamily_of_eq, Units.finrank_mul_regOfFamily_eq_det, mixedEmbedding.mem_span_fractionalIdealLatticeBasis, mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice, mixedEmbedding.convexBodySumFun_apply, InfinitePlace.isUnramified_smul_iff, InfinitePlace.orbitRelEquiv_apply_mk'', InfinitePlace.card_eq_card_isUnramifiedIn, mixedEmbedding.polarCoordReal_source, mixedEmbedding.fundamentalCone.mem_normLeOne, InfinitePlace.map_ratCast, mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, InfinitePlace.ext_iff, mixedEmbedding.span_idealLatticeBasis, mixedEmbedding.fundamentalCone.norm_expMapBasis, mixedEmbedding.convexBodySumFun_smul, InfinitePlace.instMonoidWithZeroHomClassReal, mixedEmbedding.logMap_real_smul, mixedEmbedding.polarCoord_symm_apply, mixedEmbedding.indexEquiv_apply_isComplex_fst, Units.dirichletUnitTheorem.map_logEmbedding_sup_torsion, mixedEmbedding.unit_smul_eq_iff_mul_eq, IsCMField.equivInfinitePlace_apply, mixedEmbedding.fundamentalCone.completeBasis_apply_of_eq, InfinitePlace.smul_coe_apply, mixedEmbedding.realSpace.volume_eq_zero, mixedEmbedding.mem_span_latticeBasis, Units.dirichletUnitTheorem.sum_logEmbedding_component, mixedEmbedding.fundamentalCone.existsUnique_preimage_of_mem_integerSet, hermiteTheorem.finite_of_discr_bdd_of_isComplex, mixedEmbedding.euclidean.volumePreserving_toMixed, Units.dirichletUnitTheorem.unitLattice_span_eq_top, mixedEmbedding.covolume_idealLattice, mixedEmbedding.fundamentalCone.expMap_basis_of_eq, mixedEmbedding.volume_preserving_negAt, mixedEmbedding.normAtPlace_add_le, mixedEmbedding.fundamentalCone.prod_expMapBasis_pow, mixedEmbedding.negAt_apply_isComplex, mixedEmbedding.fundamentalCone.expMapBasis_closure_subset_compactSet, mixedEmbedding.fundamentalCone.continuous_expMap, InfinitePlace.card_isUnramified, mixedEmbedding.normAtComplexPlaces_normAtAllPlaces, mixedEmbedding.fundamentalCone.expMap_smul, InfinitePlace.isComplex_smul_iff, mixedEmbedding.adjust_f, Units.mem_torsion, mixedEmbedding.fundamentalCone.realSpaceToLogSpace_apply, mixedEmbedding.mem_negAt_plusPart_of_mem, Units.regOfFamily_of_isMaxRank, mixedEmbedding.fundamentalCone.closure_normLeOne_subset, mixedEmbedding.convexBodySumFun_neg, IsCMField.card_infinitePlace_eq_card_infinitePlace, mixedEmbedding.convexBodySumFun_continuous, InfinitePlace.card_isUnramified_compl, mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, mixedEmbedding.logMap_eq_logEmbedding, mixedEmbedding.fundamentalCone.normAtAllPlaces_mem_fundamentalCone_iff, mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, mixedEmbedding.fundamentalCone.hasFDerivAt_expMap, Units.dirichletUnitTheorem.mult_log_place_eq_zero, mixedEmbedding.norm_nonneg, mixedEmbedding.mixedEmbedding_apply_isReal, mixedEmbedding.stdBasis_apply_isComplex_fst, mixedEmbedding.fundamentalCone.continuous_expMapBasis, mixedEmbedding.norm_smul, mixedEmbedding.fundamentalDomain_stdBasis, mixedEmbedding.span_latticeBasis, mixedEmbedding.measurableSet_fundamentalCone, mixedEmbedding.fundamentalCone.expMap_symm_apply, Units.dirichletUnitTheorem.unitLattice_inter_ball_finite, mixedEmbedding.polarCoord_source, InfinitePlace.isRamified_iff_card_stabilizer_eq_two, mixedEmbedding.stdBasis_repr_eq_matrixToStdBasis_mul, mixedEmbedding.continuous_norm, Units.dirichletUnitTheorem.logEmbedding_eq_zero_iff, mixedEmbedding.det_matrixToStdBasis, mixedEmbedding.polarSpaceCoord_symm_apply, mixedEmbedding.fundamentalCone.norm_normAtAllPlaces, mixedEmbedding.normAtAllPlaces_mixedEmbedding, mixedEmbedding.covolume_integerLattice, mixedEmbedding.mixedSpaceToRealMixedSpace_apply, Units.instDiscrete_unitLattice, mixedEmbedding.fundamentalCone.closure_paramSet, mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, mixedEmbedding.convexBodyLT_neg_mem, mixedEmbedding.polarCoord_target, mixedEmbedding.fundamentalCone.hasFDerivAt_expMapBasis, mixedEmbedding.normAtPlace_polarCoord_symm_of_isReal, mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, mixedEmbedding.negAt_symm, InfinitePlace.denseRange_algebraMap_pi, mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, mixedEmbedding.fundamentalCone.normAtPlace_pos_of_mem, InfinitePlace.isReal_smul_iff, mixedEmbedding.fundamentalCone.setLIntegral_paramSet_exp, mixedEmbedding.polarCoord_symm_eq, mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, mixedEmbedding.instIsZLatticeRealMixedSpaceIntegerLattice, Units.abs_det_eq_abs_det, mixedEmbedding.polarSpaceCoord_target', mixedEmbedding.exists_primitive_element_lt_of_isReal, mixedEmbedding.convexBodyLT'_volume, InfinitePlace.sum_eq_sum_add_sum, mixedEmbedding.iUnion_negAt_plusPart_union, mixedEmbedding.logMap_unit_smul, mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal, mixedEmbedding.normAtPlace_neg, mixedEmbedding.unitSMul_smul, mixedEmbedding.continuous_normAtPlace, mixedEmbedding.indexEquiv_apply_isReal, mixedEmbedding.injective_mixedSpaceOfRealSpace, mixedEmbedding.fundamentalCone.expMapBasis_pos, mixedEmbedding.normAtPlace_apply, mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, mixedEmbedding.volume_eq_zero, mixedEmbedding.fundamentalCone.expMap_apply, mixedEmbedding.stdBasis_apply_isReal, mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, mixedEmbedding.normAtPlace_apply_of_isComplex, mixedEmbedding_injective, InfinitePlace.comap_smul, InfinitePlace.not_isUnramified_iff_card_stabilizer_eq_two, mixedEmbedding.forall_normAtPlace_eq_zero_iff, mixedEmbedding.convexBodyLT_convex, mixedEmbedding.instIsZLatticeRealMixedSpaceIdealLattice, Units.dirichletUnitTheorem.logEmbedding_component, InfinitePlace.mult_isReal, mixedEmbedding.logMap_apply, mixedEmbedding.fundamentalCone.injective_expMapBasis, Units.logEmbeddingQuot_injective, mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex, mixedEmbedding.latticeBasis_apply, mixedEmbedding.unit_smul_eq_zero, InfinitePlace.isUnramified_iff_stabilizer_eq_bot, mixedEmbedding.lintegral_comp_polarCoordReal_symm, mixedEmbedding.measurable_polarCoord_symm, mixedEmbedding.fundamentalCone.intNorm_coe, mixedEmbedding.norm_eq_zero_iff, mixedEmbedding.fundamentalCone.expMap_source, mixedEmbedding.fundamentalCone.expMapBasis_apply'', mixedEmbedding.normAtPlace_nonneg, mixedEmbedding.logMap_real, mixedEmbedding.commMap_apply_of_isReal, Rat.infinitePlace_apply, mixedEmbedding.polarCoord_apply, mixedEmbedding.hasFDerivAt_polarCoordReal_symm, mixedEmbedding.continuous_normAtAllPlaces, mixedEmbedding.latticeBasis_repr_apply, mixedEmbedding.normAtPlace_negAt, mixedEmbedding.homeoRealMixedSpacePolarSpace_apply, mixedEmbedding.normAtPlace_smul, mixedEmbedding.fundamentalCone.isBounded_normLeOne, mixedEmbedding.finrank, IsUnramifiedAtInfinitePlaces.card_infinitePlace, mixedEmbedding.polarCoordReal_symm_target_ae_eq_univ, mixedEmbedding.fractionalIdealLatticeBasis_apply, mixedEmbedding.convexBodySum_isBounded, mixedEmbedding.polarSpaceCoord_apply, mixedEmbedding.negAt_apply_norm_isReal, mixedEmbedding.fundamentalCone.expMap_add, InfinitePlace.embedding_injective, InfinitePlace.mem_stabilizer_mk_iff, InfinitePlace.prod_eq_prod_mul_prod, InfinitePlace.mkComplex_coe, mixedEmbedding.fundamentalCone.expMapBasis_apply, Units.unitLattice_rank, InfinitePlace.card_eq_nrRealPlaces_add_nrComplexPlaces, mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_snd, mixedEmbedding.norm_real, mixedEmbedding.volume_fundamentalDomain_latticeBasis, Units.logEmbeddingEquiv_apply, mixedEmbedding.polarSpaceCoord_source, InfinitePlace.mem_orbit_iff, mixedEmbedding.indexEquiv_apply_isComplex_snd, InfinitePlace.eq_iff_eq, mixedEmbedding.polarCoord_target_eq_polarCoordReal_target, InfinitePlace.map_intCast, mixedEmbedding.fundamentalCone.compactSet_ae, mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, mixedEmbedding.instIsAddHaarMeasureRealMixedSpaceVolume, mixedEmbedding.euclidean.finrank, mixedEmbedding.fundamentalCone.realSpaceToLogSpace_expMap_symm, mixedEmbedding.homeoRealMixedSpacePolarSpace_symm_apply, mixedEmbedding.euclidean.volumePreserving_toMixed_symm, mixedEmbedding.convexBodySum_convex, mixedEmbedding.fundamentalCone.mem_idealSet, mixedEmbedding.fundamentalCone.volume_normLeOne, IsCMField.infinitePlace_complexConj, prod_archAbsVal_eq, mixedEmbedding.fundamentalCone.zero_mem_compactSet, mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, mixedEmbedding.fundamentalCone.normAtAllPlaces_image_preimage_expMapBasis, mixedEmbedding.mixedEmbedding_apply_isComplex, mixedEmbedding.fundamentalCone.smul_mem_iff_mem, mixedEmbedding.fundamentalCone.mem_integerSet, mixedEmbedding.normAtAllPlaces_mixedSpaceOfRealSpace, mixedEmbedding.det_fderivPolarCoordRealSymm, mixedEmbedding.fundamentalCone.expMap_sum, Units.finrank_mul_regulator_eq_det, InfinitePlace.prod_eq_abs_norm, mulHeight₁_eq, mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne_eq_image, mixedEmbedding.disjoint_span_commMap_ker, InfinitePlace.map_natCast, Units.sum_mult_mul_log, InfiniteAdeleRing.ringEquiv_mixedSpace_apply, mixedEmbedding.convexBodySum_volume, mixedEmbedding.convexBodyLT'_neg_mem, Units.regulator_eq_det', mixedEmbedding.polarCoordReal_target, Units.dirichletUnitTheorem.logEmbedding_ker, mixedEmbedding.fundamentalCone.expMapBasis_source, mixedEmbedding.logMap_zero, Units.dirichletUnitTheorem.exists_unit, mixedEmbedding.fundamentalCone.measurableSet_paramSet, mixedEmbedding.integral_comp_polarCoord_symm, mixedEmbedding.fundamentalCone.expMap_pos, mixedEmbedding.normAtComplexPlaces_apply_isComplex, InfinitePlace.comap_surjective, Units.basisOfIsMaxRank_fundSystem, mixedEmbedding.fundamentalCone.linearIndependent_completeFamily, mixedEmbedding.fundamentalCone.measurableSet_normLeOne, mixedEmbedding.commMap_canonical_eq_mixed, mixedEmbedding.norm_negAt, Rat.instSubsingletonInfinitePlace, mixedEmbedding.norm_unit, Units.regOfFamily_eq_det', mixedEmbedding.fundamentalCone.normLeOne_eq_preimage, InfinitePlace.apply, mixedEmbedding.integral_comp_polarCoordReal_symm, mixedEmbedding.fundamentalCone.compactSet_eq_union, mixedEmbedding.normAtPlace_mixedSpaceOfRealSpace, mixedEmbedding.measurable_polarSpaceCoord_symm, mixedEmbedding.nnnorm_eq_sup_normAtPlace, mixedEmbedding.fundamentalCone.injective_expMap, mixedEmbedding.fundamentalCone.expMap_basis_of_ne, mixedEmbedding.disjoint_negAt_plusPart, mixedEmbedding.logMap_mul, mixedEmbedding.volume_fundamentalDomain_stdBasis, mixedEmbedding.convexBodySum_mem, mixedEmbedding.fundamentalCone.expMapBasis_nonneg, mixedEmbedding.convexBodyLT'_convex, mixedEmbedding.mem_rat_span_latticeBasis, mixedEmbedding.norm_apply, mixedEmbedding.fundamentalCone.logMap_normAtAllPlaces, mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, mixedEmbedding.normAtAllPlaces_normAtAllPlaces, mixedEmbedding.normAtPlace_real, mixedEmbedding.normAtComplexPlaces_apply_isReal, InfinitePlace.instNonnegHomClassReal, mixedEmbedding.fundamentalCone.intNorm_idealSetEquiv_apply, hermiteTheorem.finite_of_discr_bdd_of_isReal, mixedEmbedding.mixedSpaceOfRealSpace_apply, mixedEmbedding.convexBodySumFun_eq_zero_iff, mixedEmbedding.fundamentalCone.closure_paramSet_ae_interior, mixedEmbedding.lintegral_comp_polarSpaceCoord_symm
IsInfinitePlace πŸ“–MathDef
3 mathmath: isInfinitePlace_iff, InfinitePlace.isInfinitePlace, mem_multisetInfinitePlace

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_eq_top_of_infinitePlace_lt πŸ“–mathematicalReal
Real.instLT
DFunLike.coe
InfinitePlace
InfinitePlace.instFunLikeReal
RingOfIntegers.val
Real.instOne
InfinitePlace.IsReal
abs
Real.lattice
Real.instAddGroup
Complex.re
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
InfinitePlace.embedding
Algebra.adjoin
Rat.commSemiring
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Set
Set.instSingletonSet
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”to_charZero
IntermediateField.adjoin_simple_toSubalgebra_of_isAlgebraic
IsAlgebraic.of_finite
Rat.nontrivial
to_finiteDimensional
is_primitive_element_of_infinitePlace_lt
instNonemptyInfinitePlaceOfRingHomComplex πŸ“–mathematicalβ€”InfinitePlaceβ€”Set.instNonemptyRange
Complex.instNontrivial
isInfinitePlace_iff πŸ“–mathematicalβ€”IsInfinitePlace
AbsoluteValue
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
β€”Complex.instNontrivial
InfinitePlace.isInfinitePlace
is_primitive_element_of_infinitePlace_lt πŸ“–mathematicalReal
Real.instLT
DFunLike.coe
InfinitePlace
InfinitePlace.instFunLikeReal
RingOfIntegers.val
Real.instOne
InfinitePlace.IsReal
abs
Real.lattice
Real.instAddGroup
Complex.re
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
InfinitePlace.embedding
IntermediateField.adjoin
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”to_charZero
Complex.instCharZero
Field.primitive_element_iff_algHom_eq_of_eval
to_finiteDimensional
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
Rat.instCharZero
IsAlgClosed.splits
Complex.isAlgClosed
InfinitePlace.one_le_of_lt_one
Mathlib.Tactic.Contrapose.contrapose₁
InfinitePlace.norm_embedding_eq
InfinitePlace.conjugate_embedding_eq_of_isReal
InfinitePlace.mk_eq_iff
InfinitePlace.mk_embedding
LT.lt.not_ge
Complex.conj_eq_iff_im
RingHom.congr_fun
Complex.norm_real
add_zero
MulZeroClass.zero_mul
Complex.ofReal_zero
Complex.re_add_im

NumberField.InfinitePlace

Definitions

NameCategoryTheorems
IsComplex πŸ“–MathDef
218 mathmath: mult_isComplex, NumberField.mixedEmbedding.integral_comp_polarSpaceCoord_symm, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, NumberField.mixedEmbedding.normAtComplexPlaces_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.logMap_one, NumberField.mixedEmbedding.lintegral_comp_polarCoord_symm, NumberField.mixedEmbedding.measurable_polarCoordReal_symm, NumberField.mixedEmbedding.norm_eq_sup'_normAtPlace, NumberField.mixedEmbedding.convexBodyLT'_mem, NumberField.mixedEmbedding.convexBodySumFun_add_le, isReal_or_isComplex, not_isComplex_iff_isReal, NumberField.mixedEmbedding.normAtAllPlaces_apply, NumberField.mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst, NumberField.mixedEmbedding.norm_unit_smul, NumberField.mixedEmbedding.norm_eq_norm, NumberField.mixedEmbedding.norm_le_convexBodySumFun, NumberField.mixedEmbedding.mem_idealLattice, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume, NumberField.mixedEmbedding.polarCoordReal_apply, IsRamified.isComplex, NumberField.mixedEmbedding.instNoAtomsMixedSpaceVolume, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, NumberField.mixedEmbedding.convexBodyLT_volume, NumberField.mixedEmbedding.polarSpaceCoord_target, NumberField.mixedEmbedding.negAt_apply_snd, NumberField.mixedEmbedding.convexBodyLT_mem, NumberField.mixedEmbedding.convexBodySumFun_apply', NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, NumberField.mixedEmbedding.convexBodySum_neg_mem, NumberField.mixedEmbedding.negAt_preimage, NumberField.mixedEmbedding.fundamentalCone.volume_frontier_normLeOne, NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae, NumberField.mixedEmbedding.normAtPlace_apply_of_isReal, NumberField.mixedEmbedding.stdBasis_apply_isComplex_snd, NumberField.mixedEmbedding.negAt_signSet_apply_isComplex, NumberField.mixedEmbedding.fundamentalCone.volume_interior_eq_volume_closure, NumberField.mixedEmbedding.fundamentalCone.smul_mem_of_mem, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, NumberField.mixedEmbedding.convexBodySum_volume_eq_zero_of_le_zero, NumberField.mixedEmbedding.normAtComplexPlaces_polarSpaceCoord_symm, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, NumberField.InfiniteAdeleRing.mixedEmbedding_eq_algebraMap_comp, NumberField.mixedEmbedding.convexBodySum_compact, NumberField.mixedEmbedding.fundamentalCone.norm_pos_of_mem, NumberField.mixedEmbedding.fundamentalCone.subset_interior_normLeOne, NumberField.mixedEmbedding.negAt_signSet_apply_isReal, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice, NumberField.mixedEmbedding.convexBodySumFun_apply, NumberField.mixedEmbedding.polarCoordReal_source, NumberField.mixedEmbedding.fundamentalCone.mem_normLeOne, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, NumberField.mixedEmbedding.span_idealLatticeBasis, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, NumberField.mixedEmbedding.convexBodySumFun_smul, NumberField.mixedEmbedding.logMap_real_smul, NumberField.mixedEmbedding.polarCoord_symm_apply, NumberField.mixedEmbedding.indexEquiv_apply_isComplex_fst, NumberField.mixedEmbedding.unit_smul_eq_iff_mul_eq, NumberField.mixedEmbedding.mem_span_latticeBasis, NumberField.mixedEmbedding.fundamentalCone.existsUnique_preimage_of_mem_integerSet, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isComplex, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, NumberField.mixedEmbedding.negAt_apply_isReal_and_notMem, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.mixedEmbedding.volume_preserving_negAt, NumberField.mixedEmbedding.normAtPlace_add_le, NumberField.mixedEmbedding.negAt_apply_isComplex, isRamified_iff, NumberField.mixedEmbedding.normAtComplexPlaces_normAtAllPlaces, isComplex_smul_iff, NumberField.mixedEmbedding.mem_negAt_plusPart_of_mem, NumberField.mixedEmbedding.fundamentalCone.closure_normLeOne_subset, NumberField.mixedEmbedding.convexBodySumFun_neg, NumberField.mixedEmbedding.convexBodySumFun_continuous, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, NumberField.mixedEmbedding.logMap_eq_logEmbedding, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_mem_fundamentalCone_iff, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, NumberField.mixedEmbedding.norm_nonneg, NumberField.mixedEmbedding.mixedEmbedding_apply_isReal, NumberField.mixedEmbedding.stdBasis_apply_isComplex_fst, NumberField.mixedEmbedding.norm_smul, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, NumberField.mixedEmbedding.span_latticeBasis, NumberField.IsTotallyComplex.isComplex, NumberField.mixedEmbedding.measurableSet_fundamentalCone, NumberField.mixedEmbedding.polarCoord_source, NumberField.isTotallyComplex_iff, NumberField.mixedEmbedding.stdBasis_repr_eq_matrixToStdBasis_mul, NumberField.mixedEmbedding.continuous_norm, NumberField.mixedEmbedding.det_matrixToStdBasis, NumberField.mixedEmbedding.polarSpaceCoord_symm_apply, NumberField.mixedEmbedding.fundamentalCone.norm_normAtAllPlaces, NumberField.mixedEmbedding.normAtAllPlaces_mixedEmbedding, NumberField.mixedEmbedding.covolume_integerLattice, NumberField.mixedEmbedding.mixedSpaceToRealMixedSpace_apply, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, NumberField.mixedEmbedding.convexBodyLT_neg_mem, NumberField.mixedEmbedding.polarCoord_target, NumberField.mixedEmbedding.normAtPlace_polarCoord_symm_of_isReal, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, not_isUnramified_iff, isUnramified_iff, NumberField.mixedEmbedding.negAt_symm, NumberField.mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, NumberField.mixedEmbedding.fundamentalCone.normAtPlace_pos_of_mem, NumberField.mixedEmbedding.polarCoord_symm_eq, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIntegerLattice, NumberField.mixedEmbedding.negAt_apply_isReal_and_mem, NumberField.mixedEmbedding.polarSpaceCoord_target', NumberField.mixedEmbedding.convexBodyLT'_volume, sum_eq_sum_add_sum, NumberField.mixedEmbedding.iUnion_negAt_plusPart_union, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal, NumberField.mixedEmbedding.normAtPlace_neg, NumberField.mixedEmbedding.unitSMul_smul, NumberField.mixedEmbedding.continuous_normAtPlace, NumberField.mixedEmbedding.indexEquiv_apply_isReal, NumberField.mixedEmbedding.injective_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.normAtPlace_apply, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, NumberField.mixedEmbedding.volume_eq_zero, NumberField.mixedEmbedding.stdBasis_apply_isReal, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, NumberField.mixedEmbedding_injective, NumberField.mixedEmbedding.forall_normAtPlace_eq_zero_iff, NumberField.mixedEmbedding.convexBodyLT_convex, isComplex_iff, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIdealLattice, NumberField.mixedEmbedding.logMap_apply, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex, NumberField.mixedEmbedding.latticeBasis_apply, NumberField.mixedEmbedding.unit_smul_eq_zero, NumberField.mixedEmbedding.lintegral_comp_polarCoordReal_symm, NumberField.mixedEmbedding.measurable_polarCoord_symm, NumberField.mixedEmbedding.fundamentalCone.intNorm_coe, NumberField.mixedEmbedding.norm_eq_zero_iff, NumberField.mixedEmbedding.normAtPlace_nonneg, NumberField.mixedEmbedding.logMap_real, NumberField.mixedEmbedding.commMap_apply_of_isReal, NumberField.mixedEmbedding.polarCoord_apply, NumberField.mixedEmbedding.hasFDerivAt_polarCoordReal_symm, NumberField.mixedEmbedding.continuous_normAtAllPlaces, NumberField.mixedEmbedding.latticeBasis_repr_apply, NumberField.mixedEmbedding.normAtPlace_negAt, not_isReal_iff_isComplex, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply, NumberField.mixedEmbedding.normAtPlace_smul, NumberField.mixedEmbedding.fundamentalCone.isBounded_normLeOne, NumberField.mixedEmbedding.finrank, NumberField.mixedEmbedding.polarCoordReal_symm_target_ae_eq_univ, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, NumberField.mixedEmbedding.convexBodySum_isBounded, NumberField.mixedEmbedding.polarSpaceCoord_apply, NumberField.mixedEmbedding.negAt_apply_norm_isReal, prod_eq_prod_mul_prod, mkComplex_coe, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_snd, NumberField.mixedEmbedding.norm_real, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, NumberField.mixedEmbedding.polarSpaceCoord_source, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, NumberField.mixedEmbedding.indexEquiv_apply_isComplex_snd, NumberField.mixedEmbedding.polarCoord_target_eq_polarCoordReal_target, NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, NumberField.mixedEmbedding.instIsAddHaarMeasureRealMixedSpaceVolume, NumberField.mixedEmbedding.euclidean.finrank, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_expMap_symm, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_symm_apply, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, NumberField.mixedEmbedding.convexBodySum_convex, NumberField.mixedEmbedding.fundamentalCone.mem_idealSet, NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, NumberField.mixedEmbedding.mixedEmbedding_apply_isComplex, NumberField.mixedEmbedding.fundamentalCone.smul_mem_iff_mem, NumberField.mixedEmbedding.fundamentalCone.mem_integerSet, NumberField.mixedEmbedding.normAtAllPlaces_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.det_fderivPolarCoordRealSymm, NumberField.mixedEmbedding.disjoint_span_commMap_ker, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply, NumberField.mixedEmbedding.convexBodySum_volume, NumberField.mixedEmbedding.convexBodyLT'_neg_mem, NumberField.mixedEmbedding.polarCoordReal_target, isComplex_mk_iff, NumberField.mixedEmbedding.logMap_zero, NumberField.mixedEmbedding.integral_comp_polarCoord_symm, NumberField.mixedEmbedding.normAtComplexPlaces_apply_isComplex, NumberField.mixedEmbedding.fundamentalCone.measurableSet_normLeOne, NumberField.mixedEmbedding.commMap_canonical_eq_mixed, NumberField.mixedEmbedding.norm_negAt, NumberField.mixedEmbedding.norm_unit, disjoint_isReal_isComplex, NumberField.mixedEmbedding.integral_comp_polarCoordReal_symm, NumberField.mixedEmbedding.normAtPlace_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.measurable_polarSpaceCoord_symm, NumberField.mixedEmbedding.nnnorm_eq_sup_normAtPlace, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, NumberField.mixedEmbedding.disjoint_negAt_plusPart, NumberField.mixedEmbedding.logMap_mul, NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis, NumberField.mixedEmbedding.convexBodySum_mem, NumberField.mixedEmbedding.convexBodyLT'_convex, NumberField.mixedEmbedding.mem_rat_span_latticeBasis, NumberField.mixedEmbedding.norm_apply, NumberField.mixedEmbedding.fundamentalCone.logMap_normAtAllPlaces, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, NumberField.mixedEmbedding.normAtAllPlaces_normAtAllPlaces, NumberField.mixedEmbedding.normAtPlace_real, NumberField.mixedEmbedding.fundamentalCone.intNorm_idealSetEquiv_apply, NumberField.mixedEmbedding.mixedSpaceOfRealSpace_apply, NumberField.mixedEmbedding.convexBodySumFun_eq_zero_iff, NumberField.mixedEmbedding.lintegral_comp_polarSpaceCoord_symm
IsReal πŸ“–MathDef
215 mathmath: NumberField.mixedEmbedding.integral_comp_polarSpaceCoord_symm, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, NumberField.mixedEmbedding.normAtComplexPlaces_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.logMap_one, NumberField.mixedEmbedding.lintegral_comp_polarCoord_symm, NumberField.mixedEmbedding.measurable_polarCoordReal_symm, NumberField.mixedEmbedding.norm_eq_sup'_normAtPlace, NumberField.mixedEmbedding.convexBodyLT'_mem, NumberField.mixedEmbedding.convexBodySumFun_add_le, isReal_or_isComplex, not_isComplex_iff_isReal, NumberField.mixedEmbedding.normAtAllPlaces_apply, NumberField.mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst, NumberField.mixedEmbedding.normAtPlace_polarCoord_symm_of_isComplex, NumberField.mixedEmbedding.norm_unit_smul, NumberField.mixedEmbedding.norm_eq_norm, NumberField.mixedEmbedding.norm_le_convexBodySumFun, NumberField.mixedEmbedding.mem_idealLattice, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume, NumberField.mixedEmbedding.polarCoordReal_apply, NumberField.mixedEmbedding.commMap_apply_of_isComplex, NumberField.mixedEmbedding.instNoAtomsMixedSpaceVolume, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, NumberField.mixedEmbedding.convexBodyLT_volume, NumberField.mixedEmbedding.polarSpaceCoord_target, NumberField.mixedEmbedding.negAt_apply_snd, NumberField.mixedEmbedding.convexBodyLT_mem, NumberField.mixedEmbedding.convexBodySumFun_apply', NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, NumberField.mixedEmbedding.convexBodySum_neg_mem, NumberField.mixedEmbedding.negAt_preimage, NumberField.mixedEmbedding.fundamentalCone.volume_frontier_normLeOne, NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae, NumberField.mixedEmbedding.stdBasis_apply_isComplex_snd, NumberField.mixedEmbedding.negAt_signSet_apply_isComplex, NumberField.mixedEmbedding.fundamentalCone.volume_interior_eq_volume_closure, NumberField.mixedEmbedding.fundamentalCone.smul_mem_of_mem, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, NumberField.mixedEmbedding.convexBodySum_volume_eq_zero_of_le_zero, isReal_iff, NumberField.mixedEmbedding.normAtComplexPlaces_polarSpaceCoord_symm, mkReal_coe, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, Rat.isReal_infinitePlace, NumberField.InfiniteAdeleRing.mixedEmbedding_eq_algebraMap_comp, NumberField.mixedEmbedding.convexBodySum_compact, NumberField.mixedEmbedding.fundamentalCone.norm_pos_of_mem, NumberField.mixedEmbedding.fundamentalCone.subset_interior_normLeOne, NumberField.mixedEmbedding.negAt_signSet_apply_isReal, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice, NumberField.mixedEmbedding.convexBodySumFun_apply, NumberField.mixedEmbedding.polarCoordReal_source, NumberField.mixedEmbedding.fundamentalCone.mem_normLeOne, NumberField.mixedEmbedding.span_idealLatticeBasis, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, NumberField.mixedEmbedding.convexBodySumFun_smul, NumberField.mixedEmbedding.logMap_real_smul, NumberField.mixedEmbedding.polarCoord_symm_apply, NumberField.mixedEmbedding.indexEquiv_apply_isComplex_fst, NumberField.mixedEmbedding.unit_smul_eq_iff_mul_eq, NumberField.mixedEmbedding.mem_span_latticeBasis, NumberField.mixedEmbedding.fundamentalCone.existsUnique_preimage_of_mem_integerSet, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.mixedEmbedding.volume_preserving_negAt, NumberField.mixedEmbedding.normAtPlace_add_le, NumberField.mixedEmbedding.negAt_apply_isComplex, isRamified_iff, NumberField.mixedEmbedding.normAtComplexPlaces_normAtAllPlaces, IsRamified.isReal, NumberField.mixedEmbedding.mem_negAt_plusPart_of_mem, NumberField.mixedEmbedding.fundamentalCone.closure_normLeOne_subset, NumberField.isTotallyReal_iff, NumberField.mixedEmbedding.convexBodySumFun_neg, NumberField.mixedEmbedding.convexBodySumFun_continuous, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, NumberField.mixedEmbedding.logMap_eq_logEmbedding, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_mem_fundamentalCone_iff, isReal_mk_iff, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, NumberField.mixedEmbedding.norm_nonneg, NumberField.mixedEmbedding.mixedEmbedding_apply_isReal, NumberField.mixedEmbedding.stdBasis_apply_isComplex_fst, NumberField.mixedEmbedding.norm_smul, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, NumberField.mixedEmbedding.span_latticeBasis, NumberField.mixedEmbedding.measurableSet_fundamentalCone, NumberField.mixedEmbedding.polarCoord_source, NumberField.mixedEmbedding.stdBasis_repr_eq_matrixToStdBasis_mul, NumberField.mixedEmbedding.continuous_norm, NumberField.mixedEmbedding.det_matrixToStdBasis, NumberField.mixedEmbedding.polarSpaceCoord_symm_apply, NumberField.mixedEmbedding.fundamentalCone.norm_normAtAllPlaces, NumberField.mixedEmbedding.normAtAllPlaces_mixedEmbedding, NumberField.mixedEmbedding.covolume_integerLattice, NumberField.mixedEmbedding.mixedSpaceToRealMixedSpace_apply, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, NumberField.mixedEmbedding.convexBodyLT_neg_mem, NumberField.mixedEmbedding.polarCoord_target, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, not_isUnramified_iff, isUnramified_iff, NumberField.mixedEmbedding.negAt_symm, NumberField.mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, NumberField.mixedEmbedding.fundamentalCone.normAtPlace_pos_of_mem, isReal_smul_iff, NumberField.mixedEmbedding.polarCoord_symm_eq, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIntegerLattice, NumberField.mixedEmbedding.polarSpaceCoord_target', NumberField.mixedEmbedding.convexBodyLT'_volume, sum_eq_sum_add_sum, NumberField.mixedEmbedding.iUnion_negAt_plusPart_union, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal, NumberField.mixedEmbedding.normAtPlace_neg, isReal_comap_iff, NumberField.mixedEmbedding.unitSMul_smul, NumberField.mixedEmbedding.continuous_normAtPlace, NumberField.mixedEmbedding.indexEquiv_apply_isReal, NumberField.mixedEmbedding.injective_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.normAtPlace_apply, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, NumberField.mixedEmbedding.volume_eq_zero, NumberField.mixedEmbedding.stdBasis_apply_isReal, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, NumberField.mixedEmbedding.normAtPlace_apply_of_isComplex, NumberField.mixedEmbedding_injective, NumberField.mixedEmbedding.forall_normAtPlace_eq_zero_iff, NumberField.mixedEmbedding.convexBodyLT_convex, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIdealLattice, mult_isReal, NumberField.mixedEmbedding.logMap_apply, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex, NumberField.mixedEmbedding.latticeBasis_apply, NumberField.mixedEmbedding.unit_smul_eq_zero, NumberField.mixedEmbedding.lintegral_comp_polarCoordReal_symm, NumberField.mixedEmbedding.measurable_polarCoord_symm, NumberField.mixedEmbedding.fundamentalCone.intNorm_coe, NumberField.mixedEmbedding.norm_eq_zero_iff, NumberField.mixedEmbedding.normAtPlace_nonneg, NumberField.mixedEmbedding.logMap_real, NumberField.mixedEmbedding.polarCoord_apply, NumberField.mixedEmbedding.hasFDerivAt_polarCoordReal_symm, NumberField.mixedEmbedding.continuous_normAtAllPlaces, NumberField.mixedEmbedding.latticeBasis_repr_apply, NumberField.mixedEmbedding.normAtPlace_negAt, not_isReal_iff_isComplex, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply, NumberField.mixedEmbedding.normAtPlace_smul, NumberField.mixedEmbedding.fundamentalCone.isBounded_normLeOne, NumberField.mixedEmbedding.finrank, NumberField.mixedEmbedding.polarCoordReal_symm_target_ae_eq_univ, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, NumberField.mixedEmbedding.convexBodySum_isBounded, NumberField.mixedEmbedding.polarSpaceCoord_apply, NumberField.mixedEmbedding.negAt_apply_norm_isReal, prod_eq_prod_mul_prod, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_snd, NumberField.mixedEmbedding.norm_real, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, NumberField.mixedEmbedding.polarSpaceCoord_source, NumberField.mixedEmbedding.indexEquiv_apply_isComplex_snd, NumberField.mixedEmbedding.polarCoord_target_eq_polarCoordReal_target, NumberField.mixedEmbedding.instIsAddHaarMeasureRealMixedSpaceVolume, NumberField.mixedEmbedding.euclidean.finrank, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_expMap_symm, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_symm_apply, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, NumberField.mixedEmbedding.convexBodySum_convex, NumberField.mixedEmbedding.fundamentalCone.mem_idealSet, NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, NumberField.mixedEmbedding.mixedEmbedding_apply_isComplex, NumberField.mixedEmbedding.fundamentalCone.smul_mem_iff_mem, NumberField.mixedEmbedding.fundamentalCone.mem_integerSet, NumberField.mixedEmbedding.normAtAllPlaces_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.det_fderivPolarCoordRealSymm, NumberField.mixedEmbedding.disjoint_span_commMap_ker, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply, NumberField.mixedEmbedding.convexBodySum_volume, NumberField.mixedEmbedding.convexBodyLT'_neg_mem, NumberField.mixedEmbedding.polarCoordReal_target, NumberField.mixedEmbedding.logMap_zero, NumberField.mixedEmbedding.integral_comp_polarCoord_symm, NumberField.mixedEmbedding.fundamentalCone.measurableSet_normLeOne, NumberField.mixedEmbedding.commMap_canonical_eq_mixed, NumberField.IsTotallyReal.isReal, NumberField.mixedEmbedding.norm_negAt, NumberField.mixedEmbedding.norm_unit, disjoint_isReal_isComplex, NumberField.mixedEmbedding.integral_comp_polarCoordReal_symm, NumberField.mixedEmbedding.normAtPlace_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.measurable_polarSpaceCoord_symm, NumberField.mixedEmbedding.nnnorm_eq_sup_normAtPlace, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, NumberField.mixedEmbedding.disjoint_negAt_plusPart, NumberField.mixedEmbedding.logMap_mul, NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis, NumberField.mixedEmbedding.convexBodySum_mem, NumberField.mixedEmbedding.convexBodyLT'_convex, NumberField.mixedEmbedding.mem_rat_span_latticeBasis, NumberField.mixedEmbedding.norm_apply, NumberField.mixedEmbedding.fundamentalCone.logMap_normAtAllPlaces, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, NumberField.mixedEmbedding.normAtAllPlaces_normAtAllPlaces, NumberField.mixedEmbedding.normAtPlace_real, NumberField.mixedEmbedding.normAtComplexPlaces_apply_isReal, NumberField.mixedEmbedding.fundamentalCone.intNorm_idealSetEquiv_apply, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isReal, NumberField.mixedEmbedding.mixedSpaceOfRealSpace_apply, NumberField.mixedEmbedding.convexBodySumFun_eq_zero_iff, NumberField.mixedEmbedding.lintegral_comp_polarSpaceCoord_symm
embedding πŸ“–CompOp
31 mathmath: IsUnramified.isUnmixed, NumberField.mixedEmbedding.convexBodyLT'_mem, isometry_embedding, IsUnramified.isUnmixed_conjugate, NumberField.mixedEmbedding.commMap_apply_of_isComplex, IsRamified.isMixed_conjugate_embedding, conjugate_embedding_injective, norm_embedding_eq, isReal_iff, mk_embedding, IsRamified.comap_embedding_conjugate, NumberField.mixedEmbedding.indexEquiv_apply_isComplex_fst, NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt', embedding_mk_eq_of_isReal, IsRamified.comap_embedding, LiesOver.embedding_comp_eq_or_conjugate_embedding_comp_eq, embedding_of_isReal_apply, Completion.extensionEmbedding_coe, conjugate_embedding_eq_of_isReal, embedding_mk_eq, NumberField.mixedEmbedding.indexEquiv_apply_isReal, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt', isComplex_iff, LiesOver.mk_embedding_comp, NumberField.mixedEmbedding.commMap_apply_of_isReal, embedding_inj, embedding_injective, NumberField.mixedEmbedding.indexEquiv_apply_isComplex_snd, NumberField.mixedEmbedding.mixedEmbedding_apply_isComplex, comap_embedding_of_isReal, IsRamified.isMixed_embedding
embedding_of_isReal πŸ“–CompOp
6 mathmath: norm_embedding_of_isReal, Completion.extensionEmbeddingOfIsReal_coe, NumberField.mixedEmbedding.mixedEmbedding_apply_isReal, embedding_of_isReal_apply, isometry_embedding_of_isReal, Completion.extensionEmbedding_of_isReal_coe
instFunLikeReal πŸ“–CompOp
50 mathmath: NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', norm_embedding_of_isReal, NumberField.mixedEmbedding.convexBodyLT'_mem, le_iff_le, NumberField.IsCMField.equivInfinitePlace_symm_apply, NumberField.Units.regOfFamily_eq_det, NumberField.Units.dirichletUnitTheorem.seq_decreasing, NumberField.Units.pos_at_place, Completion.norm_coe, comap_apply, NumberField.prod_abs_eq_one, smul_apply, NumberField.Units.dirichletUnitTheorem.seq_next, NumberField.mixedEmbedding.convexBodyLT_mem, coe_apply, comp_of_comap_eq, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex, norm_embedding_eq, NumberField.mulHeight_eq, pos_iff, NumberField.Units.regulator_eq_det, NumberField.Units.finrank_mul_regOfFamily_eq_det, map_ratCast, ext_iff, instMonoidWithZeroHomClassReal, NumberField.Units.dirichletUnitTheorem.sum_logEmbedding_component, NumberField.Units.mem_torsion, NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt', NumberField.Units.dirichletUnitTheorem.mult_log_place_eq_zero, NumberField.Units.dirichletUnitTheorem.log_le_of_logEmbedding_le, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt, NumberField.mixedEmbedding.normAtAllPlaces_mixedEmbedding, NumberField.Units.abs_det_eq_abs_det, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal, NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt, NumberField.mixedEmbedding.normAtPlace_apply, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_lt', NumberField.Units.dirichletUnitTheorem.logEmbedding_component, Rat.infinitePlace_apply, eq_iff_eq, map_intCast, NumberField.IsCMField.infinitePlace_complexConj, NumberField.Units.finrank_mul_regulator_eq_det, prod_eq_abs_norm, NumberField.mulHeight₁_eq, map_natCast, NumberField.Units.sum_mult_mul_log, NumberField.Units.dirichletUnitTheorem.exists_unit, apply, instNonnegHomClassReal
mk πŸ“–CompOpβ€”
mkComplex πŸ“–CompOp
1 mathmath: mkComplex_coe
mkReal πŸ“–CompOp
1 mathmath: mkReal_coe
mult πŸ“–CompOp
42 mathmath: mult_isComplex, sum_mult_eq, NumberField.Units.regOfFamily_eq_det, NumberField.prod_abs_eq_one, NumberField.mixedEmbedding.convexBodyLT_volume, NumberField.mulHeight_eq, NumberField.Units.regulator_eq_det, card_filter_mk_eq, NumberField.Units.finrank_mul_regOfFamily_eq_det, NumberField.mixedEmbedding.convexBodySumFun_apply, NumberField.IsTotallyComplex.mult_eq, NumberField.IsTotallyReal.mult_eq, mult_comap_le, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_eq, NumberField.Units.dirichletUnitTheorem.sum_logEmbedding_component, NumberField.mixedEmbedding.fundamentalCone.prod_expMapBasis_pow, NumberField.mixedEmbedding.adjust_f, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_apply, NumberField.mixedEmbedding.logMap_apply_of_norm_eq_one, IsUnramified.eq, NumberField.Units.dirichletUnitTheorem.mult_log_place_eq_zero, NumberField.mixedEmbedding.fundamentalCone.expMap_symm_apply, NumberField.count_multisetInfinitePlace_eq_mult, NumberField.Units.abs_det_eq_abs_det, NumberField.mixedEmbedding.convexBodyLT'_volume, NumberField.mixedEmbedding.fundamentalCone.expMap_single_symm_apply, NumberField.mixedEmbedding.fundamentalCone.expMap_apply, mult_pos, one_le_mult, NumberField.Units.dirichletUnitTheorem.logEmbedding_component, mult_isReal, NumberField.mixedEmbedding.logMap_apply, NumberField.mixedEmbedding.logMap_apply_of_norm_one, NumberField.mixedEmbedding.fundamentalCone.expMap_single_apply, NumberField.prod_archAbsVal_eq, isUnramified_iff_mult_le, NumberField.Units.finrank_mul_regulator_eq_det, prod_eq_abs_norm, NumberField.mulHeight₁_eq, NumberField.Units.sum_mult_mul_log, NumberField.mixedEmbedding.convexBodySum_mem, NumberField.mixedEmbedding.norm_apply
nrComplexPlaces πŸ“–CompOp
28 mathmath: NumberField.dedekindZeta_residue_def, NumberField.abs_discr_ge', IsCyclotomicExtension.Rat.nrComplexPlaces_eq_totient_div_two, NumberField.IsTotallyComplex.finrank, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, ComplexEmbedding.conjugate_sign, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.Ideal.tendsto_norm_le_div_atTopβ‚€, NumberField.mixedEmbedding.det_matrixToStdBasis, NumberField.mixedEmbedding.covolume_integerLattice, NumberField.mixedEmbedding.volume_eq_two_pow_mul_two_pi_pow_mul_integral, NumberField.exists_ideal_in_class_of_norm_le, NumberField.Ideal.tendsto_norm_le_div_atTop, NumberField.exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, NumberField.nrComplexPlaces_eq_zero_iff, nrComplexPlaces_eq_zero_of_finrank_eq_one, NumberField.sign_discr, card_eq_nrRealPlaces_add_nrComplexPlaces, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, card_add_two_mul_card_eq_rank, NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne, NumberField.mixedEmbedding.volume_eq_two_pi_pow_mul_integral, card_complex_embeddings, NumberField.IsTotallyReal.nrComplexPlaces_eq_zero
nrRealPlaces πŸ“–CompOp
17 mathmath: NumberField.dedekindZeta_residue_def, IsPrimitiveRoot.nrRealPlaces_eq_zero_of_two_lt, NumberField.IsTotallyReal.finrank, NumberField.nrRealPlaces_eq_zero_iff, NumberField.Ideal.tendsto_norm_le_div_atTopβ‚€, card_real_embeddings, NumberField.mixedEmbedding.volume_eq_two_pow_mul_two_pi_pow_mul_integral, NumberField.Ideal.tendsto_norm_le_div_atTop, IsCyclotomicExtension.Rat.nrRealPlaces_eq_zero, nrRealPlaces_pos_of_odd_finrank, card_eq_nrRealPlaces_add_nrComplexPlaces, card_add_two_mul_card_eq_rank, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne, nrRealPlaces_eq_one_of_finrank_eq_one, NumberField.mixedEmbedding.volume_eq_two_pow_mul_volume_plusPart, NumberField.IsTotallyComplex.nrRealPlaces_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
apply πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
Norm.norm
Complex
Complex.instNorm
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
β€”β€”
card_add_two_mul_card_eq_rank πŸ“–mathematicalβ€”nrRealPlaces
nrComplexPlaces
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
β€”NumberField.to_charZero
Complex.instCharZero
card_real_embeddings
card_complex_embeddings
Fintype.card_subtype_compl
NumberField.Embeddings.card
Complex.isAlgClosed
Fintype.card_subtype_le
card_complex_embeddings πŸ“–mathematicalβ€”Fintype.card
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
NumberField.ComplexEmbedding.IsReal
Subtype.fintype
NumberField.Embeddings.instFintypeRingHom
Complex.instField
Complex.instCharZero
nrComplexPlaces
β€”Complex.instCharZero
Fintype.card_subtype
Fintype.card_congr
not_isReal_of_mk_isComplex
mkComplex_coe
not_isReal_iff_isComplex
card_filter_mk_eq
Fintype.card.eq_1
Finset.card_eq_sum_ones
Finset.sum_fiberwise
Finset.sum_congr
Finset.sum_const
mul_one
Finset.mul_sum
card_eq_nrRealPlaces_add_nrComplexPlaces πŸ“–mathematicalβ€”Fintype.card
NumberField.InfinitePlace
NumberField.InfinitePlace.fintype
nrRealPlaces
nrComplexPlaces
β€”Fintype.card_of_subtype
isReal_or_isComplex
Fintype.card_subtype_or_disjoint
disjoint_isReal_isComplex
card_filter_mk_eq πŸ“–mathematicalβ€”Finset.card
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
Finset.filter
NumberField.InfinitePlace
Finset.univ
NumberField.Embeddings.instFintypeRingHom
Complex.instField
Complex.instCharZero
mult
β€”Complex.instCharZero
mk_embedding
mk_eq_iff
NumberField.ComplexEmbedding.conjugate.eq_1
Function.Involutive.eq_iff
InvolutiveStar.star_involutive
Finset.filter_or
Finset.filter_eq'
NumberField.ComplexEmbedding.isReal_iff
isReal_iff
Finset.union_idempotent
Finset.card_singleton
Finset.card_pair
card_real_embeddings πŸ“–mathematicalβ€”Fintype.card
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
NumberField.ComplexEmbedding.IsReal
Subtype.fintype
NumberField.Embeddings.instFintypeRingHom
Complex.instField
Complex.instCharZero
nrRealPlaces
β€”Fintype.card_congr
Complex.instCharZero
coe_apply πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
AbsoluteValue
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
β€”β€”
conjugate_embedding_eq_of_isReal πŸ“–mathematicalIsRealNumberField.ComplexEmbedding.conjugate
embedding
β€”NumberField.ComplexEmbedding.isReal_iff
isReal_iff
conjugate_embedding_injective πŸ“–mathematicalβ€”NumberField.InfinitePlace
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
NumberField.ComplexEmbedding.conjugate
embedding
β€”star_injective
embedding_injective
denseRange_algebraMap_pi πŸ“–mathematicalβ€”DenseRange
Pi.topologicalSpace
NumberField.InfinitePlace
WithAbs
Real
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
DFunLike.coe
CommSemiring.toSemiring
Semifield.toCommSemiring
Pi.semiring
WithAbs.instSemiring
RingHom.instFunLike
algebraMap
Pi.algebra
WithAbs.instAlgebra_right
Algebra.id
β€”Complex.instNontrivial
Metric.denseRange_iff
tendsto_pi_nhds
Fintype.sum_pi_single
map_sum
RingHomClass.toAddMonoidHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Finset.sum_congr
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
tendsto_finset_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Pi.single_apply
map_invβ‚€
instMonoidWithZeroHomClassReal
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
inv_pow
one_div
RingHomClass.toMonoidWithZeroHomClass
map_add
AddMonoidHomClass.toAddHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
map_pow
RingEquiv.symm_apply_apply
one_mul
Filter.Tendsto.mul_const
IsTopologicalSemiring.toContinuousMul
WithAbs.tendsto_one_div_one_add_pow_nhds_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
pos_iff
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MulZeroClass.zero_mul
tendsto_zero_iff_norm_tendsto_zero
AbsoluteValue.tendsto_div_one_add_pow_nhds_zero
Real.instArchimedean
instOrderTopologyReal
Metric.tendsto_atTop
le_rfl
dist_comm
AbsoluteValue.exists_one_lt_lt_one_pi_of_not_isEquiv
Finite.of_fintype
isNontrivial
Iff.not
eq_iff_isEquiv
disjoint_isReal_isComplex πŸ“–mathematicalβ€”Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
setOf
IsReal
IsComplex
β€”Set.disjoint_iff
not_isReal_iff_isComplex
embedding_inj πŸ“–mathematicalβ€”embeddingβ€”embedding_injective
embedding_injective πŸ“–mathematicalβ€”NumberField.InfinitePlace
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
embedding
β€”mk_embedding
embedding_mk_eq πŸ“–mathematicalβ€”embedding
NumberField.ComplexEmbedding.conjugate
β€”mk_eq_iff
mk_embedding
embedding_mk_eq_of_isReal πŸ“–mathematicalNumberField.ComplexEmbedding.IsRealembeddingβ€”embedding_mk_eq
NumberField.ComplexEmbedding.isReal_iff
embedding_of_isReal_apply πŸ“–mathematicalIsRealComplex.ofReal
DFunLike.coe
RingHom
Real
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
RingHom.instFunLike
embedding_of_isReal
Complex
Complex.instSemiring
embedding
β€”NumberField.ComplexEmbedding.IsReal.coe_embedding_apply
isReal_iff
eq_iff_eq πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
Norm.norm
Complex
Complex.instNorm
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
β€”Complex.instNontrivial
eq_iff_isEquiv πŸ“–mathematicalβ€”AbsoluteValue.IsEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real
Real.semiring
Real.partialOrder
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
β€”Complex.instNontrivial
AbsoluteValue.IsEquiv.rfl
AbsoluteValue.isEquiv_iff_exists_rpow_eq
ext
eq_one_of_rpow_eq
Real.rpow_one
eq_of_embedding_eq_conjugate πŸ“–β€”embedding
NumberField.ComplexEmbedding.conjugate
β€”β€”mk_embedding
mk_conjugate_eq
eq_one_of_rpow_eq πŸ“–mathematicalReal
Pi.instPow
Real.instPow
DFunLike.coe
NumberField.InfinitePlace
instFunLikeReal
Real.instOneβ€”NoMaxOrder.exists_gt
Nat.instNoMaxOrder
RCLike.charZero_rclike
Real.rpow_one
map_natCast
ext πŸ“–β€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
β€”β€”Complex.instNontrivial
AbsoluteValue.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
β€”ext
instMonoidWithZeroHomClassReal πŸ“–mathematicalβ€”MonoidWithZeroHomClass
NumberField.InfinitePlace
Real
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
instFunLikeReal
β€”AbsoluteValue.map_mul
Complex.instNontrivial
AbsoluteValue.map_one
Real.instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
AbsoluteValue.map_zero
instNonnegHomClassReal πŸ“–mathematicalβ€”NonnegHomClass
NumberField.InfinitePlace
Real
Real.instZero
Real.instLE
instFunLikeReal
β€”AbsoluteValue.nonneg
Complex.instNontrivial
isComplex_iff πŸ“–mathematicalβ€”IsComplex
NumberField.ComplexEmbedding.IsReal
embedding
β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
mk_eq_iff
mk_embedding
NumberField.ComplexEmbedding.isReal_conjugate_iff
isComplex_mk_iff πŸ“–mathematicalβ€”IsComplex
NumberField.ComplexEmbedding.IsReal
β€”not_isReal_iff_isComplex
Iff.not
isReal_mk_iff
isInfinitePlace πŸ“–mathematicalβ€”NumberField.IsInfinitePlace
AbsoluteValue
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
β€”Subtype.prop
Complex.instNontrivial
isNontrivial πŸ“–mathematicalβ€”AbsoluteValue.IsNontrivial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real
Real.semiring
Real.partialOrder
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
β€”Complex.instNontrivial
NoMaxOrder.exists_gt
Nat.instNoMaxOrder
pos_iff
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
map_natCast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
isReal_iff πŸ“–mathematicalβ€”IsReal
NumberField.ComplexEmbedding.IsReal
embedding
β€”embedding_mk_eq_of_isReal
mk_embedding
isReal_mk_iff πŸ“–mathematicalβ€”IsReal
NumberField.ComplexEmbedding.IsReal
β€”isReal_of_mk_isReal
isReal_of_mk_isReal πŸ“–mathematicalIsRealNumberField.ComplexEmbedding.IsRealβ€”Mathlib.Tactic.Contrapose.contrapose₁
not_isReal_iff_isComplex
isReal_or_isComplex πŸ“–mathematicalβ€”IsReal
IsComplex
β€”not_isReal_iff_isComplex
em
le_iff_le πŸ“–mathematicalβ€”Real
Real.instLE
DFunLike.coe
NumberField.InfinitePlace
instFunLikeReal
Norm.norm
Complex
Complex.instNorm
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
β€”Complex.instNontrivial
map_intCast πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Norm.norm
NormedRing.toNorm
NormedCommRing.toNormedRing
Int.instNormedCommRing
β€”Complex.instNontrivial
map_intCast
RingHom.instRingHomClass
Complex.norm_intCast
map_natCast πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Real.instNatCast
β€”Complex.instNontrivial
map_natCast
RingHom.instRingHomClass
RCLike.norm_natCast
map_ratCast πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
Real
instFunLikeReal
DivisionRing.toRatCast
Field.toDivisionRing
Norm.norm
NormedField.toNorm
Rat.instNormedField
β€”Complex.instNontrivial
map_ratCast
RingHom.instRingHomClass
Complex.norm_ratCast
mkComplex_coe πŸ“–mathematicalβ€”NumberField.InfinitePlace
IsComplex
mkComplex
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
NumberField.ComplexEmbedding.IsReal
β€”β€”
mkReal_coe πŸ“–mathematicalβ€”NumberField.InfinitePlace
IsReal
DFunLike.coe
Equiv
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
NumberField.ComplexEmbedding.IsReal
EquivLike.toFunLike
Equiv.instEquivLike
mkReal
β€”β€”
mk_conjugate_eq πŸ“–mathematicalβ€”NumberField.ComplexEmbedding.conjugateβ€”DFunLike.ext
apply
NumberField.ComplexEmbedding.conjugate_coe_eq
Complex.norm_conj
mk_embedding πŸ“–mathematicalβ€”embeddingβ€”Complex.instNontrivial
mk_eq_iff πŸ“–mathematicalβ€”NumberField.ComplexEmbedding.conjugateβ€”Function.Injective.hasLeftInverse
Nontrivial.to_nonempty
IsLocalRing.toNontrivial
Field.instIsLocalRing
RingHom.injective
DivisionRing.isSimpleRing
Complex.instNontrivial
SubringClass.toSubsemiringClass
Subring.instSubringClass
LipschitzWith.of_dist_le_mul
NNReal.coe_one
one_mul
NormedField.dist_eq
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
le_of_eq
SubringClass.addSubgroupClass
RingEquiv.ofLeftInverse_apply
RingEquiv.apply_symm_apply
Complex.uniformContinuous_ringHom_eq_id_or_conj
LipschitzWith.uniformContinuous
RingHom.ext
mk_conjugate_eq
mult_coe_ne_zero πŸ“–β€”β€”β€”β€”Nat.cast_ne_zero
RCLike.charZero_rclike
mult_ne_zero
mult_isComplex πŸ“–mathematicalβ€”mult
NumberField.InfinitePlace
IsComplex
β€”mult.eq_1
not_isReal_iff_isComplex
Subtype.prop
mult_isReal πŸ“–mathematicalβ€”mult
NumberField.InfinitePlace
IsReal
β€”mult.eq_1
Subtype.prop
mult_ne_zero πŸ“–β€”β€”β€”β€”ne_of_gt
mult_pos
mult_pos πŸ“–mathematicalβ€”multβ€”mult.eq_1
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
ne_of_isReal_isComplex πŸ“–β€”IsReal
IsComplex
β€”β€”not_isReal_iff_isComplex
norm_embedding_eq πŸ“–mathematicalβ€”Norm.norm
Complex
Complex.instNorm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
embedding
NumberField.InfinitePlace
Real
instFunLikeReal
β€”mk_embedding
norm_embedding_of_isReal πŸ“–mathematicalIsRealNorm.norm
Real
Real.norm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
RingHom.instFunLike
embedding_of_isReal
NumberField.InfinitePlace
instFunLikeReal
β€”norm_embedding_eq
embedding_of_isReal_apply
Complex.norm_real
not_isComplex_iff_isReal πŸ“–mathematicalβ€”IsComplex
IsReal
β€”isComplex_iff
isReal_iff
not_isReal_iff_isComplex πŸ“–mathematicalβ€”IsReal
IsComplex
β€”isComplex_iff
isReal_iff
not_isReal_of_mk_isComplex πŸ“–mathematicalIsComplexNumberField.ComplexEmbedding.IsRealβ€”isComplex_mk_iff
nrComplexPlaces_eq_zero_of_finrank_eq_one πŸ“–mathematicalModule.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
nrComplexPlacesβ€”NumberField.to_charZero
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.Linarith.natCast_nonneg
Nat.cast_zero
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
sub_eq_zero_of_eq
Nat.cast_one
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Meta.NormNum.isNat_lt_true
Int.instCharZero
Nat.cast_add
Nat.cast_mul
card_add_two_mul_card_eq_rank
nrRealPlaces_eq_one_of_finrank_eq_one πŸ“–mathematicalModule.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
nrRealPlacesβ€”NumberField.to_charZero
card_add_two_mul_card_eq_rank
add_zero
MulZeroClass.mul_zero
nrComplexPlaces_eq_zero_of_finrank_eq_one
nrRealPlaces_pos_of_odd_finrank πŸ“–mathematicalOdd
Nat.instSemiring
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
nrRealPlacesβ€”NumberField.to_charZero
Nat.not_odd_iff_even
card_add_two_mul_card_eq_rank
zero_add
even_two_mul
one_le_mult πŸ“–mathematicalβ€”Real
Real.instLE
Real.instOne
Real.instNatCast
mult
β€”Nat.cast_one
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
mult_pos
one_le_of_lt_one πŸ“–mathematicalReal
Real.instLT
DFunLike.coe
NumberField.InfinitePlace
instFunLikeReal
NumberField.RingOfIntegers.val
Real.instOne
Real.instLEβ€”NumberField.to_charZero
Algebra.coe_norm_int
Int.cast_one
Int.cast_abs
Rat.instIsStrictOrderedRing
Rat.cast_intCast
Int.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Int.one_le_abs
Algebra.norm_ne_zero_iff
Int.instIsDomain
NumberField.RingOfIntegers.instIsDomain
NumberField.RingOfIntegers.instFreeInt
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
Mathlib.Tactic.Contrapose.contrapose₁
prod_eq_abs_norm
Finset.prod_const_one
Finset.prod_lt_prod_of_nonempty
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instNontrivial
pow_pos
pos_iff
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
Iff.not
Subalgebra.coe_eq_zero
pow_lt_oneβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
NonnegHomClass.apply_nonneg
instNonnegHomClassReal
mult.eq_1
Mathlib.Meta.NormNum.isNat_eq_false
Nat.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Finset.univ_nonempty
NumberField.instNonemptyInfinitePlaceOfRingHomComplex
NumberField.Embeddings.instNonemptyRingHom
Complex.instCharZero
Complex.isAlgClosed
pos_iff πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
DFunLike.coe
NumberField.InfinitePlace
instFunLikeReal
β€”AbsoluteValue.pos_iff
Complex.instNontrivial
prod_eq_abs_norm πŸ“–mathematicalβ€”Finset.prod
NumberField.InfinitePlace
Real
Real.instCommMonoid
Finset.univ
NumberField.InfinitePlace.fintype
Monoid.toNatPow
Real.instMonoid
DFunLike.coe
instFunLikeReal
mult
Real.instRatCast
abs
Rat.instLattice
Rat.addGroup
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
CommSemiring.toSemiring
CommRing.toCommSemiring
Rat.commRing
MonoidHom.instFunLike
Algebra.norm
DivisionRing.toRatAlgebra
NumberField.to_charZero
β€”NumberField.to_charZero
Complex.instCharZero
instIsDomain
NumberField.to_finiteDimensional
norm_prod
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Fintype.prod_equiv
Finset.prod_fiberwise
Finset.mem_filter
apply
Finset.prod_congr
Finset.prod_const
card_filter_mk_eq
eq_ratCast
RingHom.instRingHomClass
Rat.cast_abs
Real.instIsStrictOrderedRing
Real.norm_eq_abs
Complex.norm_real
Complex.ofReal_ratCast
Algebra.norm_eq_prod_embeddings
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
Rat.instCharZero
Complex.isAlgClosed
prod_eq_prod_mul_prod πŸ“–mathematicalβ€”Finset.prod
NumberField.InfinitePlace
Finset.univ
NumberField.InfinitePlace.fintype
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
IsReal
Subtype.fintype
IsComplex
β€”not_isReal_iff_isComplex
Equiv.prod_comp
Finset.prod_congr
Fintype.prod_subtype_mul_prod_subtype
sum_eq_sum_add_sum πŸ“–mathematicalβ€”Finset.sum
NumberField.InfinitePlace
Finset.univ
NumberField.InfinitePlace.fintype
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsReal
Subtype.fintype
IsComplex
β€”not_isReal_iff_isComplex
Equiv.sum_comp
Finset.sum_congr
Fintype.sum_subtype_add_sum_subtype
sum_mult_eq πŸ“–mathematicalβ€”Finset.sum
NumberField.InfinitePlace
Nat.instAddCommMonoid
Finset.univ
NumberField.InfinitePlace.fintype
mult
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
β€”NumberField.to_charZero
Complex.instCharZero
NumberField.Embeddings.card
Complex.isAlgClosed
Fintype.card.eq_1
Finset.card_eq_sum_ones
Finset.sum_fiberwise
Finset.sum_congr
Finset.sum_const
smul_eq_mul
mul_one
card_filter_mk_eq

NumberField.InfinitePlace.ComplexEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
conjugate_sign πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Equiv.Perm
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
Units
Int.instMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Equiv.Perm.permGroup
Units.instMulOneClass
MonoidHom.instFunLike
Equiv.Perm.sign
NumberField.Embeddings.instFintypeRingHom
Complex.instField
Complex.instCharZero
Function.Involutive.toPerm
NumberField.ComplexEmbedding.conjugate
NumberField.ComplexEmbedding.involutive_conjugate
Int.instUnitsPow
Nat.instCommSemiring
AddCommMonoid.toNatModule
Additive
Additive.addCommMonoid
CommGroup.toCommMonoid
Units.instCommGroupUnits
Int.instCommMonoid
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
Units.instOne
NumberField.InfinitePlace.nrComplexPlaces
β€”Complex.instCharZero
NumberField.ComplexEmbedding.involutive_conjugate
Equiv.Perm.sign_of_pow_two_eq_one
Equiv.ext
Function.Involutive.toPerm_involutive
NumberField.to_charZero
NumberField.Embeddings.card
Complex.isAlgClosed
NumberField.InfinitePlace.card_add_two_mul_card_eq_rank
NumberField.InfinitePlace.card_real_embeddings
Fintype.card.eq_1
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid

NumberField.InfinitePlace.IsPrimitiveRoot

Theorems

NameKindAssumesProvesValidatesDepends On
nrRealPlaces_eq_zero_of_two_lt πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.InfinitePlace.nrRealPlacesβ€”Fintype.card_eq_zero_iff
IsPrimitiveRoot.map_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingHom.injective
DivisionRing.isSimpleRing
Complex.instNontrivial
Complex.conj_eq_iff_im
NumberField.ComplexEmbedding.conjugate_coe_eq
NumberField.InfinitePlace.isReal_iff
Complex.norm_eq_one_of_pow_eq_one
IsPrimitiveRoot.pow_eq_one
abs_eq_abs
abs_one
Real.instIsOrderedRing
Complex.abs_re_eq_norm
IsPrimitiveRoot.ne_one
Complex.ext
IsPrimitiveRoot.eq_orderOf
neg_zero
orderOf_neg_one
ringChar.eq_zero
Complex.instCharZero
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat

NumberField.InfinitePlace.NumberField.InfinitePlace

Definitions

NameCategoryTheorems
fintype πŸ“–CompOp
96 mathmath: NumberField.mixedEmbedding.integral_comp_polarSpaceCoord_symm, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', NumberField.mixedEmbedding.fundamentalDomain_integerLattice, NumberField.mixedEmbedding.lintegral_comp_polarCoord_symm, NumberField.InfinitePlace.sum_mult_eq, NumberField.mixedEmbedding.norm_eq_sup'_normAtPlace, NumberField.mixedEmbedding.fundamentalCone.abs_det_completeBasis_equivFunL_symm, NumberField.mixedEmbedding.norm_le_convexBodySumFun, NumberField.Units.regOfFamily_eq_det, NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume, NumberField.InfinitePlace.card_mono, NumberField.mixedEmbedding.instNoAtomsMixedSpaceVolume, NumberField.prod_abs_eq_one, NumberField.mixedEmbedding.convexBodyLT_volume, NumberField.mixedEmbedding.convexBodySumFun_apply', NumberField.mixedEmbedding.fundamentalCone.volume_frontier_normLeOne, NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae, NumberField.mixedEmbedding.fundamentalCone.volume_interior_eq_volume_closure, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, NumberField.mixedEmbedding.convexBodySum_volume_eq_zero_of_le_zero, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, NumberField.Units.instZLattice_unitLattice, NumberField.mulHeight_eq, NumberField.Units.regulator_eq_det, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, NumberField.Units.finrank_mul_regOfFamily_eq_det, NumberField.mixedEmbedding.convexBodySumFun_apply, NumberField.InfinitePlace.card_eq_card_isUnramifiedIn, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, NumberField.mixedEmbedding.realSpace.volume_eq_zero, NumberField.Units.dirichletUnitTheorem.sum_logEmbedding_component, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.mixedEmbedding.volume_preserving_negAt, NumberField.mixedEmbedding.fundamentalCone.prod_expMapBasis_pow, NumberField.InfinitePlace.card_isUnramified, NumberField.mixedEmbedding.adjust_f, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_apply, NumberField.Units.regOfFamily_of_isMaxRank, NumberField.IsCMField.card_infinitePlace_eq_card_infinitePlace, NumberField.InfinitePlace.card_isUnramified_compl, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, NumberField.Units.dirichletUnitTheorem.unitLattice_inter_ball_finite, NumberField.mixedEmbedding.stdBasis_repr_eq_matrixToStdBasis_mul, NumberField.mixedEmbedding.det_matrixToStdBasis, NumberField.mixedEmbedding.covolume_integerLattice, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_paramSet_exp, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIntegerLattice, NumberField.Units.abs_det_eq_abs_det, NumberField.mixedEmbedding.volume_negAt_plusPart, NumberField.mixedEmbedding.convexBodyLT'_volume, NumberField.InfinitePlace.sum_eq_sum_add_sum, NumberField.mixedEmbedding.volume_eq_two_pow_mul_two_pi_pow_mul_integral, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, NumberField.mixedEmbedding.volume_eq_zero, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIdealLattice, NumberField.mixedEmbedding.lintegral_comp_polarCoordReal_symm, IsUnramifiedAtInfinitePlaces.card_infinitePlace, NumberField.mixedEmbedding.polarCoordReal_symm_target_ae_eq_univ, NumberField.InfinitePlace.prod_eq_prod_mul_prod, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply, NumberField.InfinitePlace.card_eq_nrRealPlaces_add_nrComplexPlaces, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, NumberField.mixedEmbedding.fundamentalCone.sum_eq_zero_of_mem_span_completeFamily, NumberField.mixedEmbedding.fundamentalCone.compactSet_ae, NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, NumberField.mixedEmbedding.instIsAddHaarMeasureRealMixedSpaceVolume, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne, NumberField.prod_archAbsVal_eq, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, NumberField.mixedEmbedding.det_fderivPolarCoordRealSymm, NumberField.Units.finrank_mul_regulator_eq_det, NumberField.InfinitePlace.prod_eq_abs_norm, NumberField.mulHeight₁_eq, NumberField.mixedEmbedding.volume_eq_two_pi_pow_mul_integral, NumberField.Units.sum_mult_mul_log, NumberField.mixedEmbedding.convexBodySum_volume, NumberField.Units.regulator_eq_det', NumberField.mixedEmbedding.integral_comp_polarCoord_symm, NumberField.Units.basisOfIsMaxRank_fundSystem, NumberField.Units.regOfFamily_eq_det', NumberField.mixedEmbedding.integral_comp_polarCoordReal_symm, NumberField.mixedEmbedding.nnnorm_eq_sup_normAtPlace, NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis, NumberField.mixedEmbedding.volume_eq_two_pow_mul_volume_plusPart, NumberField.mixedEmbedding.convexBodySum_mem, NumberField.mixedEmbedding.norm_apply, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, NumberField.mixedEmbedding.fundamentalCone.closure_paramSet_ae_interior, NumberField.mixedEmbedding.lintegral_comp_polarSpaceCoord_symm

Rat

Definitions

NameCategoryTheorems
infinitePlace πŸ“–CompOp
1 mathmath: isReal_infinitePlace

Theorems

NameKindAssumesProvesValidatesDepends On
infinitePlace_apply πŸ“–mathematicalβ€”DFunLike.coe
NumberField.InfinitePlace
instField
Real
NumberField.InfinitePlace.instFunLikeReal
Real.instRatCast
abs
instLattice
addGroup
β€”Complex.instNontrivial
NumberField.InfinitePlace.coe_apply
eq_ratCast
RingHom.instRingHomClass
Complex.norm_ratCast
cast_abs
Real.instIsStrictOrderedRing
instSubsingletonInfinitePlace πŸ“–mathematicalβ€”NumberField.InfinitePlace
instField
β€”NumberField.InfinitePlace.ext
infinitePlace_apply
cast_abs
Real.instIsStrictOrderedRing
isReal_infinitePlace πŸ“–mathematicalβ€”NumberField.InfinitePlace.IsReal
instField
infinitePlace
β€”Complex.instCharZero
RingHom.ext
eq_ratCast
RingHom.instRingHomClass

---

← Back to Index