| Name | Category | Theorems |
extensionEmbedding π | CompOp | 6 mathmath: surjective_extensionEmbedding_of_isComplex, isometry_extensionEmbedding, isClosed_image_extensionEmbedding, extensionEmbedding_coe, bijective_extensionEmbedding_of_isComplex, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply
|
extensionEmbeddingOfIsReal π | CompOp | 11 mathmath: isometry_extensionEmbeddingOfIsReal, extensionEmbeddingOfIsReal_coe, bijective_extensionEmbedding_of_isReal, isClosed_image_extensionEmbeddingOfIsReal, isClosed_image_extensionEmbedding_of_isReal, bijective_extensionEmbeddingOfIsReal, extensionEmbedding_of_isReal_coe, surjective_extensionEmbedding_of_isReal, surjective_extensionEmbeddingOfIsReal, isometry_extensionEmbedding_of_isReal, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply
|
instAlgebra π | CompOp | β |
instNormedField π | CompOp | 18 mathmath: isometry_extensionEmbeddingOfIsReal, surjective_extensionEmbedding_of_isComplex, isometry_extensionEmbedding, isClosed_image_extensionEmbedding, extensionEmbeddingOfIsReal_coe, bijective_extensionEmbedding_of_isReal, isClosed_image_extensionEmbeddingOfIsReal, isClosed_image_extensionEmbedding_of_isReal, extensionEmbedding_coe, bijective_extensionEmbeddingOfIsReal, bijective_extensionEmbedding_of_isComplex, extensionEmbedding_of_isReal_coe, surjective_extensionEmbedding_of_isReal, surjective_extensionEmbeddingOfIsReal, isometry_extensionEmbedding_of_isReal, WithAbs.ratCast_equiv, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply, Rat.norm_infinitePlace_completion
|
isometryEquivComplexOfIsComplex π | CompOp | β |
isometryEquivRealOfIsReal π | CompOp | β |
ringEquivComplexOfIsComplex π | CompOp | β |
ringEquivRealOfIsReal π | CompOp | β |