Documentation Verification Report

Completion

πŸ“ Source: Mathlib/NumberTheory/NumberField/InfinitePlace/Completion.lean

Statistics

MetricCount
DefinitionsCompletion, extensionEmbedding, extensionEmbeddingOfIsReal, instAlgebra, instNormedField, isometryEquivComplexOfIsComplex, isometryEquivRealOfIsReal, ringEquivComplexOfIsComplex, ringEquivRealOfIsReal
9
Theoremsnorm_infinitePlace_completion, ratCast_equiv, bijective_extensionEmbeddingOfIsReal, bijective_extensionEmbedding_of_isComplex, bijective_extensionEmbedding_of_isReal, extensionEmbeddingOfIsReal_coe, extensionEmbedding_coe, extensionEmbedding_of_isReal_coe, isClosed_image_extensionEmbedding, isClosed_image_extensionEmbeddingOfIsReal, isClosed_image_extensionEmbedding_of_isReal, isometry_extensionEmbedding, isometry_extensionEmbeddingOfIsReal, isometry_extensionEmbedding_of_isReal, locallyCompactSpace, norm_coe, subfield_ne_real_of_isComplex, surjective_extensionEmbeddingOfIsReal, surjective_extensionEmbedding_of_isComplex, surjective_extensionEmbedding_of_isReal, isometry_embedding, isometry_embedding_of_isReal
22
Total31

NumberField.InfinitePlace

Definitions

NameCategoryTheorems
Completion πŸ“–CompOp
18 mathmath: Completion.isometry_extensionEmbeddingOfIsReal, Completion.surjective_extensionEmbedding_of_isComplex, Completion.isometry_extensionEmbedding, Completion.locallyCompactSpace, Completion.isClosed_image_extensionEmbedding, Completion.extensionEmbeddingOfIsReal_coe, Completion.bijective_extensionEmbedding_of_isReal, Completion.isClosed_image_extensionEmbeddingOfIsReal, Completion.isClosed_image_extensionEmbedding_of_isReal, Completion.extensionEmbedding_coe, Completion.bijective_extensionEmbeddingOfIsReal, Completion.bijective_extensionEmbedding_of_isComplex, Completion.extensionEmbedding_of_isReal_coe, Completion.surjective_extensionEmbedding_of_isReal, Completion.surjective_extensionEmbeddingOfIsReal, Completion.isometry_extensionEmbedding_of_isReal, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply, Completion.Rat.norm_infinitePlace_completion

Theorems

NameKindAssumesProvesValidatesDepends On
isometry_embedding πŸ“–mathematicalβ€”Isometry
WithAbs
Real
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedField.toMetricSpace
WithAbs.normedField
DFunLike.coe
WithAbs.instSemiring
RingHom.instFunLike
RingHom.comp
embedding
RingEquiv.toRingHom
WithAbs.equiv
β€”AddMonoidHomClass.isometry_of_norm
Complex.instNontrivial
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
norm_embedding_eq
isometry_embedding_of_isReal πŸ“–mathematicalIsRealIsometry
WithAbs
Real
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedField.toMetricSpace
WithAbs.normedField
Real.metricSpace
DFunLike.coe
WithAbs.instSemiring
RingHom.instFunLike
RingHom.comp
embedding_of_isReal
RingEquiv.toRingHom
WithAbs.equiv
β€”AddMonoidHomClass.isometry_of_norm
Complex.instNontrivial
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
norm_embedding_of_isReal

NumberField.InfinitePlace.Completion

Definitions

NameCategoryTheorems
extensionEmbedding πŸ“–CompOp
6 mathmath: surjective_extensionEmbedding_of_isComplex, isometry_extensionEmbedding, isClosed_image_extensionEmbedding, extensionEmbedding_coe, bijective_extensionEmbedding_of_isComplex, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply
extensionEmbeddingOfIsReal πŸ“–CompOp
11 mathmath: isometry_extensionEmbeddingOfIsReal, extensionEmbeddingOfIsReal_coe, bijective_extensionEmbedding_of_isReal, isClosed_image_extensionEmbeddingOfIsReal, isClosed_image_extensionEmbedding_of_isReal, bijective_extensionEmbeddingOfIsReal, extensionEmbedding_of_isReal_coe, surjective_extensionEmbedding_of_isReal, surjective_extensionEmbeddingOfIsReal, isometry_extensionEmbedding_of_isReal, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply
instAlgebra πŸ“–CompOpβ€”
instNormedField πŸ“–CompOp
18 mathmath: isometry_extensionEmbeddingOfIsReal, surjective_extensionEmbedding_of_isComplex, isometry_extensionEmbedding, isClosed_image_extensionEmbedding, extensionEmbeddingOfIsReal_coe, bijective_extensionEmbedding_of_isReal, isClosed_image_extensionEmbeddingOfIsReal, isClosed_image_extensionEmbedding_of_isReal, extensionEmbedding_coe, bijective_extensionEmbeddingOfIsReal, bijective_extensionEmbedding_of_isComplex, extensionEmbedding_of_isReal_coe, surjective_extensionEmbedding_of_isReal, surjective_extensionEmbeddingOfIsReal, isometry_extensionEmbedding_of_isReal, WithAbs.ratCast_equiv, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply, Rat.norm_infinitePlace_completion
isometryEquivComplexOfIsComplex πŸ“–CompOpβ€”
isometryEquivRealOfIsReal πŸ“–CompOpβ€”
ringEquivComplexOfIsComplex πŸ“–CompOpβ€”
ringEquivRealOfIsReal πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_extensionEmbeddingOfIsReal πŸ“–mathematicalNumberField.InfinitePlace.IsRealFunction.Bijective
NumberField.InfinitePlace.Completion
Real
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Real.semiring
RingHom.instFunLike
extensionEmbeddingOfIsReal
β€”RingHom.injective
Complex.instNontrivial
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
DivisionRing.isSimpleRing
Real.instNontrivial
surjective_extensionEmbeddingOfIsReal
bijective_extensionEmbedding_of_isComplex πŸ“–mathematicalNumberField.InfinitePlace.IsComplexFunction.Bijective
NumberField.InfinitePlace.Completion
Complex
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Complex.instSemiring
RingHom.instFunLike
extensionEmbedding
β€”RingHom.injective
Complex.instNontrivial
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
DivisionRing.isSimpleRing
surjective_extensionEmbedding_of_isComplex
bijective_extensionEmbedding_of_isReal πŸ“–mathematicalNumberField.InfinitePlace.IsRealFunction.Bijective
NumberField.InfinitePlace.Completion
Real
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Real.semiring
RingHom.instFunLike
extensionEmbeddingOfIsReal
β€”bijective_extensionEmbeddingOfIsReal
extensionEmbeddingOfIsReal_coe πŸ“–mathematicalNumberField.InfinitePlace.IsRealDFunLike.coe
RingHom
NumberField.InfinitePlace.Completion
Real
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Real.semiring
RingHom.instFunLike
extensionEmbeddingOfIsReal
UniformSpace.Completion.coe'
WithAbs
Real.partialOrder
AbsoluteValue
Complex
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
NumberField.InfinitePlace.embedding_of_isReal
β€”Isometry.extensionHom_coe
Complex.instNontrivial
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeminormedAddCommGroup.to_isUniformAddGroup
instIsUniformAddGroupReal
instIsTopologicalRingReal
Real.instCompleteSpace
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
NumberField.InfinitePlace.isometry_embedding_of_isReal
extensionEmbedding_coe πŸ“–mathematicalβ€”DFunLike.coe
RingHom
NumberField.InfinitePlace.Completion
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Complex.instSemiring
RingHom.instFunLike
extensionEmbedding
UniformSpace.Completion.coe'
WithAbs
Real
Real.semiring
Real.partialOrder
AbsoluteValue
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
NumberField.InfinitePlace.embedding
β€”Isometry.extensionHom_coe
Complex.instNontrivial
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeminormedAddCommGroup.to_isUniformAddGroup
Complex.instCompleteSpace
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
NumberField.InfinitePlace.isometry_embedding
extensionEmbedding_of_isReal_coe πŸ“–mathematicalNumberField.InfinitePlace.IsRealDFunLike.coe
RingHom
NumberField.InfinitePlace.Completion
Real
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Real.semiring
RingHom.instFunLike
extensionEmbeddingOfIsReal
UniformSpace.Completion.coe'
WithAbs
Real.partialOrder
AbsoluteValue
Complex
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
NumberField.InfinitePlace.embedding_of_isReal
β€”extensionEmbeddingOfIsReal_coe
isClosed_image_extensionEmbedding πŸ“–mathematicalβ€”IsClosed
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set.range
NumberField.InfinitePlace.Completion
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Complex.instSemiring
RingHom.instFunLike
extensionEmbedding
β€”Topology.IsClosedEmbedding.isClosed_range
Complex.instNontrivial
Isometry.isClosedEmbedding
UniformSpace.Completion.completeSpace
Isometry.completion_extension
Complex.instCompleteSpace
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
NumberField.InfinitePlace.isometry_embedding
isClosed_image_extensionEmbeddingOfIsReal πŸ“–mathematicalNumberField.InfinitePlace.IsRealIsClosed
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.range
NumberField.InfinitePlace.Completion
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Real.semiring
RingHom.instFunLike
extensionEmbeddingOfIsReal
β€”Topology.IsClosedEmbedding.isClosed_range
Complex.instNontrivial
Isometry.isClosedEmbedding
UniformSpace.Completion.completeSpace
Isometry.completion_extension
Real.instCompleteSpace
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
NumberField.InfinitePlace.isometry_embedding_of_isReal
isClosed_image_extensionEmbedding_of_isReal πŸ“–mathematicalNumberField.InfinitePlace.IsRealIsClosed
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.range
NumberField.InfinitePlace.Completion
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Real.semiring
RingHom.instFunLike
extensionEmbeddingOfIsReal
β€”isClosed_image_extensionEmbeddingOfIsReal
isometry_extensionEmbedding πŸ“–mathematicalβ€”Isometry
NumberField.InfinitePlace.Completion
Complex
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
UniformSpace.Completion.instMetricSpace
WithAbs
Real
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AbsoluteValue
RingHom
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
NormedField.toMetricSpace
DFunLike.coe
NormedField.toField
instNormedField
RingHom.instFunLike
extensionEmbedding
β€”Isometry.completion_extension
Complex.instNontrivial
Complex.instCompleteSpace
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
NumberField.InfinitePlace.isometry_embedding
isometry_extensionEmbeddingOfIsReal πŸ“–mathematicalNumberField.InfinitePlace.IsRealIsometry
NumberField.InfinitePlace.Completion
Real
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
UniformSpace.Completion.instMetricSpace
WithAbs
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
Real.metricSpace
DFunLike.coe
NormedField.toField
instNormedField
RingHom.instFunLike
extensionEmbeddingOfIsReal
β€”Isometry.completion_extension
Complex.instNontrivial
Real.instCompleteSpace
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
NumberField.InfinitePlace.isometry_embedding_of_isReal
isometry_extensionEmbedding_of_isReal πŸ“–mathematicalNumberField.InfinitePlace.IsRealIsometry
NumberField.InfinitePlace.Completion
Real
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
UniformSpace.Completion.instMetricSpace
WithAbs
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
Real.metricSpace
DFunLike.coe
NormedField.toField
instNormedField
RingHom.instFunLike
extensionEmbeddingOfIsReal
β€”isometry_extensionEmbeddingOfIsReal
locallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpace
NumberField.InfinitePlace.Completion
UniformSpace.toTopologicalSpace
UniformSpace.Completion.uniformSpace
WithAbs
Real
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
β€”AbsoluteValue.Completion.locallyCompactSpace
Complex.instNontrivial
Complex.instCompleteSpace
locallyCompact_of_proper
Complex.instProperSpace
NumberField.InfinitePlace.isometry_embedding
norm_coe πŸ“–mathematicalβ€”Norm.norm
UniformSpace.Completion
WithAbs
Real
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
UniformSpace.Completion.instNorm
NormedField.toNorm
UniformSpace.Completion.coe'
DFunLike.coe
NumberField.InfinitePlace
NumberField.InfinitePlace.instFunLikeReal
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
WithAbs.instSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
WithAbs.equiv
β€”Complex.instNontrivial
UniformSpace.Completion.norm_coe
subfield_ne_real_of_isComplex πŸ“–β€”NumberField.InfinitePlace.IsComplexβ€”β€”Mathlib.Tactic.Contrapose.contrapose₃
RingHom.ext
Complex.instNontrivial
RingHom.mem_fieldRange_self
extensionEmbedding_coe
Complex.conj_ofReal
surjective_extensionEmbeddingOfIsReal πŸ“–mathematicalNumberField.InfinitePlace.IsRealNumberField.InfinitePlace.Completion
Real
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Real.semiring
RingHom.instFunLike
extensionEmbeddingOfIsReal
β€”RingHom.fieldRange_eq_top_iff
Real.subfield_eq_of_closed
isClosed_image_extensionEmbeddingOfIsReal
surjective_extensionEmbedding_of_isComplex πŸ“–mathematicalNumberField.InfinitePlace.IsComplexNumberField.InfinitePlace.Completion
Complex
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Complex.instSemiring
RingHom.instFunLike
extensionEmbedding
β€”RingHom.fieldRange_eq_top_iff
Complex.subfield_eq_of_closed
isClosed_image_extensionEmbedding
subfield_ne_real_of_isComplex
surjective_extensionEmbedding_of_isReal πŸ“–mathematicalNumberField.InfinitePlace.IsRealNumberField.InfinitePlace.Completion
Real
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
instNormedField
Real.semiring
RingHom.instFunLike
extensionEmbeddingOfIsReal
β€”surjective_extensionEmbeddingOfIsReal

NumberField.InfinitePlace.Completion.Rat

Theorems

NameKindAssumesProvesValidatesDepends On
norm_infinitePlace_completion πŸ“–mathematicalβ€”Norm.norm
NumberField.InfinitePlace.Completion
Rat.instField
UniformSpace.Completion.instNorm
WithAbs
Real
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
NormedField.toNorm
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NumberField.InfinitePlace.Completion.instNormedField
Real.instRatCast
abs
Rat.instLattice
Rat.addGroup
β€”Complex.instNontrivial
RingEquiv.apply_symm_apply
NumberField.InfinitePlace.Completion.WithAbs.ratCast_equiv
NumberField.InfinitePlace.Completion.norm_coe
Rat.infinitePlace_apply

NumberField.InfinitePlace.Completion.WithAbs

Theorems

NameKindAssumesProvesValidatesDepends On
ratCast_equiv πŸ“–mathematicalβ€”UniformSpace.Completion
WithAbs
Real
Real.semiring
Real.partialOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Rat.instField
AbsoluteValue
RingHom
Complex
Semiring.toNonAssocSemiring
Complex.instSemiring
NumberField.place
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
WithAbs.normedField
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NumberField.InfinitePlace.Completion.instNormedField
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
WithAbs.instSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
WithAbs.equiv
UniformSpace.Completion.coe'
β€”Complex.instNontrivial
eq_ratCast
RingHom.instRingHomClass

---

← Back to Index