Documentation Verification Report

Embeddings

πŸ“ Source: Mathlib/NumberTheory/NumberField/InfinitePlace/Embeddings.lean

Statistics

MetricCount
DefinitionsIsConj, IsMixed, IsReal, embedding, IsUnmixed, conjugate, instFintypeRingHom, place
8
Theoremscomp_eq, conjugate_comp_ne, not_isReal_of_not_isReal, comp, eq, ext, ext_iff, isReal_comp, coe_embedding_apply, comp, isConjGal_one, isReal_iff_isReal, conjugate_coe_eq, conjugate_comp, exists_comp_symm_eq_of_comp_eq, involutive_conjugate, isConj_apply_apply, isConj_ne_one_iff, isConj_one_iff, isConj_symm, isReal_comp_iff, isReal_conjugate_iff, isReal_iff, lift_algebraMap_apply, lift_comp_algebraMap, orderOf_isConj_two_of_ne_one, place_conjugate, card, coeff_bdd_of_norm_le, finite_of_norm_le, instNonemptyRingHom, instNonemptyRingHomOfIsAlgebraicRatOfIsAlgClosed, pow_eq_one_of_norm_eq_one, pow_eq_one_of_norm_le_one, range_eval_eq_rootSet_minpoly, place_apply
36
Total44

NumberField

Definitions

NameCategoryTheorems
place πŸ“–CompOp
30 mathmath: InfinitePlace.Completion.isometry_extensionEmbeddingOfIsReal, InfinitePlace.isNontrivial, InfinitePlace.eq_iff_isEquiv, prod_nonarchAbsVal_eq, isInfinitePlace_iff, InfinitePlace.isometry_embedding, InfiniteAdeleRing.algebraMap_apply, InfinitePlace.Completion.norm_coe, InfinitePlace.coe_apply, InfinitePlace.Completion.isometry_extensionEmbedding, InfinitePlace.Completion.locallyCompactSpace, InfinitePlace.Completion.extensionEmbeddingOfIsReal_coe, InfinitePlace.isInfinitePlace, InfinitePlace.smul_coe_apply, place_apply, isFinitePlace_iff, FinitePlace.coe_apply, count_multisetInfinitePlace_eq_mult, InfinitePlace.Completion.extensionEmbedding_coe, InfinitePlace.denseRange_algebraMap_pi, InfinitePlace.isometry_embedding_of_isReal, ComplexEmbedding.place_conjugate, InfinitePlace.Completion.extensionEmbedding_of_isReal_coe, AdeleRing.algebraMap_fst_apply, InfinitePlace.Completion.isometry_extensionEmbedding_of_isReal, FinitePlace.isFinitePlace, InfinitePlace.Completion.WithAbs.ratCast_equiv, prod_archAbsVal_eq, InfinitePlace.Completion.Rat.norm_infinitePlace_completion, mixedEmbedding.convexBodySum_mem

Theorems

NameKindAssumesProvesValidatesDepends On
place_apply πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
place
Norm.norm
NormedDivisionRing.toNorm
RingHom
Semiring.toNonAssocSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
RingHom.instFunLike
β€”β€”

NumberField.ComplexEmbedding

Definitions

NameCategoryTheorems
IsConj πŸ“–MathDef
7 mathmath: NumberField.IsCMField.isConj_complexConj, NumberField.InfinitePlace.exists_isConj_of_isRamified, isConj_symm, NumberField.IsCMField.exists_isConj, NumberField.InfinitePlace.mem_stabilizer_mk_iff, IsReal.isConjGal_one, isConj_one_iff
IsMixed πŸ“–MathDef
3 mathmath: NumberField.InfinitePlace.IsRamified.isMixed_conjugate_embedding, NumberField.InfinitePlace.isRamified_mk_iff_isMixed, NumberField.InfinitePlace.IsRamified.isMixed_embedding
IsReal πŸ“–MathDef
19 mathmath: isConj_ne_one_iff, NumberField.InfinitePlace.isReal_iff, NumberField.InfinitePlace.mkReal_coe, NumberField.InfinitePlace.not_isReal_of_mk_isComplex, NumberField.IsTotallyComplex.complexEmbedding_not_isReal, IsConj.isReal_comp, NumberField.InfinitePlace.isReal_mk_iff, NumberField.InfinitePlace.isReal_of_mk_isReal, NumberField.IsTotallyReal.complexEmbedding_isReal, NumberField.InfinitePlace.card_real_embeddings, NumberField.InfinitePlace.isComplex_iff, isReal_iff, IsUnmixed.isReal_iff_isReal, NumberField.InfinitePlace.mkComplex_coe, isReal_comp_iff, NumberField.InfinitePlace.isComplex_mk_iff, isConj_one_iff, NumberField.InfinitePlace.card_complex_embeddings, isReal_conjugate_iff
IsUnmixed πŸ“–MathDef
3 mathmath: NumberField.InfinitePlace.IsUnramified.isUnmixed, NumberField.InfinitePlace.IsUnramified.isUnmixed_conjugate, NumberField.InfinitePlace.isUnramified_mk_iff_isUnmixed
conjugate πŸ“–CompOp
19 mathmath: NumberField.InfinitePlace.IsUnramified.isUnmixed_conjugate, conjugate_comp, NumberField.InfinitePlace.IsRamified.isMixed_conjugate_embedding, NumberField.InfinitePlace.conjugate_embedding_injective, involutive_conjugate, NumberField.InfinitePlace.mk_eq_iff, NumberField.InfinitePlace.IsRamified.comap_embedding_conjugate, NumberField.InfinitePlace.ComplexEmbedding.conjugate_sign, NumberField.InfinitePlace.LiesOver.embedding_comp_eq_or_conjugate_embedding_comp_eq, NumberField.conj_basisMatrix, NumberField.InfinitePlace.conjugate_embedding_eq_of_isReal, place_conjugate, NumberField.InfinitePlace.embedding_mk_eq, NumberField.InfinitePlace.mk_conjugate_eq, isReal_iff, NumberField.mixedEmbedding.indexEquiv_apply_isComplex_snd, NumberField.canonicalEmbedding.conj_apply, conjugate_coe_eq, isReal_conjugate_iff

Theorems

NameKindAssumesProvesValidatesDepends On
conjugate_coe_eq πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
conjugate
CommSemiring.toSemiring
Complex.instCommSemiring
starRingEnd
Complex.instStarRing
β€”β€”
conjugate_comp πŸ“–mathematicalβ€”RingHom.comp
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
conjugate
β€”β€”
exists_comp_symm_eq_of_comp_eq πŸ“–mathematicalRingHom.comp
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Complex.instSemiring
algebraMap
RingHomClass.toRingHom
AlgEquiv
AlgEquiv.instFunLike
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
β€”IsScalarTower.of_algebraMap_eq'
RingHom.congr_fun
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
IsScalarTower.right
IsGalois.to_normal
RingHom.ext
AlgHom.restrictNormal_commutes
involutive_conjugate πŸ“–mathematicalβ€”Function.Involutive
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
conjugate
β€”star_star
isConj_apply_apply πŸ“–mathematicalIsConjDFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
β€”RingHom.injective
DivisionRing.isSimpleRing
Complex.instNontrivial
IsConj.eq
RingHomCompTriple.comp_apply
RingHomInvPair.triplesβ‚‚
RingHomInvPair.instStarRingEnd
RingHomCompTriple.right_ids
isConj_ne_one_iff πŸ“–mathematicalIsConjIsRealβ€”not_iff_not
isConj_one_iff
IsConj.ext_iff
IsReal.isConjGal_one
isConj_one_iff πŸ“–mathematicalβ€”IsConj
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AlgEquiv.aut
IsReal
β€”β€”
isConj_symm πŸ“–mathematicalβ€”IsConj
AlgEquiv.symm
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”IsConj.symm
isReal_comp_iff πŸ“–mathematicalβ€”IsReal
RingHom.comp
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingHom.ext
RingEquiv.apply_symm_apply
IsReal.comp
isReal_conjugate_iff πŸ“–mathematicalβ€”IsReal
conjugate
β€”IsSelfAdjoint.star_iff
isReal_iff πŸ“–mathematicalβ€”IsReal
conjugate
β€”isSelfAdjoint_iff
lift_algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
lift
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
β€”RingHom.congr_fun
lift_comp_algebraMap
lift_comp_algebraMap πŸ“–mathematicalβ€”RingHom.comp
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Complex.instSemiring
lift
algebraMap
β€”Complex.isAlgClosed
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.toRingHom_eq_coe
AlgHom.comp_algebraMap_of_tower
IsScalarTower.left
RingHom.algebraMap_toAlgebra'
orderOf_isConj_two_of_ne_one πŸ“–mathematicalIsConjorderOf
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
β€”orderOf_eq_prime_iff
Nat.fact_prime_two
AlgEquiv.ext
AlgEquiv.coe_pow
Function.iterate_one
isConj_apply_apply
place_conjugate πŸ“–mathematicalβ€”NumberField.place
Complex
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instNontrivial
conjugate
β€”AbsoluteValue.ext
Complex.instNontrivial
Complex.norm_conj

NumberField.ComplexEmbedding.Extension

Theorems

NameKindAssumesProvesValidatesDepends On
comp_eq πŸ“–mathematicalβ€”RingHom.comp
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Complex.instSemiring
RingHom
algebraMap
β€”β€”
conjugate_comp_ne πŸ“–β€”NumberField.ComplexEmbedding.IsRealβ€”β€”comp_eq
not_isReal_of_not_isReal πŸ“–mathematicalNumberField.ComplexEmbedding.IsRealRingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
RingHom.comp
algebraMap
β€”NumberField.ComplexEmbedding.IsReal.comp
comp_eq

NumberField.ComplexEmbedding.IsConj

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalNumberField.ComplexEmbedding.IsConjRingHom.comp
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHomClass.toRingHom
AlgEquiv
Semifield.toCommSemiring
AlgEquiv.instFunLike
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”RingHom.ext
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
mul_inv_cancel
one_mul
RingHom.congr_fun
eq πŸ“–mathematicalNumberField.ComplexEmbedding.IsConjDFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
AlgEquiv
Semifield.toCommSemiring
AlgEquiv.instFunLike
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
StarRing.toStarAddMonoid
Complex.instStarRing
β€”RingHom.congr_fun
ext πŸ“–β€”NumberField.ComplexEmbedding.IsConjβ€”β€”AlgEquiv.ext
RingHom.injective
DivisionRing.isSimpleRing
Complex.instNontrivial
eq
ext_iff πŸ“–β€”NumberField.ComplexEmbedding.IsConjβ€”β€”ext
isReal_comp πŸ“–mathematicalNumberField.ComplexEmbedding.IsConjNumberField.ComplexEmbedding.IsReal
RingHom.comp
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
algebraMap
Semifield.toCommSemiring
β€”RingHom.ext
eq
AlgEquiv.commutes

NumberField.ComplexEmbedding.IsReal

Definitions

NameCategoryTheorems
embedding πŸ“–CompOp
1 mathmath: coe_embedding_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_embedding_apply πŸ“–mathematicalNumberField.ComplexEmbedding.IsRealComplex.ofReal
DFunLike.coe
RingHom
Real
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
RingHom.instFunLike
embedding
Complex
Complex.instSemiring
β€”Complex.ext
Complex.ofReal_im
Complex.conj_eq_iff_im
RingHom.congr_fun
comp πŸ“–mathematicalNumberField.ComplexEmbedding.IsRealRingHom.comp
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
β€”RingHom.ext
RingHom.congr_fun
isConjGal_one πŸ“–mathematicalNumberField.ComplexEmbedding.IsRealNumberField.ComplexEmbedding.IsConj
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AlgEquiv.aut
β€”NumberField.ComplexEmbedding.isConj_one_iff

NumberField.ComplexEmbedding.IsUnmixed

Theorems

NameKindAssumesProvesValidatesDepends On
isReal_iff_isReal πŸ“–mathematicalNumberField.ComplexEmbedding.IsUnmixedNumberField.ComplexEmbedding.IsReal
RingHom.comp
Complex
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
algebraMap
Semifield.toCommSemiring
β€”β€”

NumberField.Embeddings

Definitions

NameCategoryTheorems
instFintypeRingHom πŸ“–CompOp
12 mathmath: NumberField.canonicalEmbedding.integerLattice.inter_ball_finite, NumberField.InfinitePlace.card_filter_mk_eq, NumberField.InfinitePlace.ComplexEmbedding.conjugate_sign, card, NumberField.canonicalEmbedding.nnnorm_eq, NumberField.discr_eq_basisMatrix_det_sq, NumberField.inverse_basisMatrix_mulVec_eq_repr, NumberField.InfinitePlace.card_real_embeddings, NumberField.canonicalEmbedding.norm_le_iff, NumberField.canonicalEmbedding_eq_basisMatrix_mulVec, NumberField.InfinitePlace.card_complex_embeddings, NumberField.house_eq_sup'

Theorems

NameKindAssumesProvesValidatesDepends On
card πŸ“–mathematicalβ€”Fintype.card
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instFintypeRingHom
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
β€”NumberField.to_charZero
NumberField.to_finiteDimensional
Fintype.ofEquiv_card
instIsDomain
AlgHom.card
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
Rat.nontrivial
PerfectField.ofCharZero
Rat.instCharZero
coeff_bdd_of_norm_le πŸ“–mathematicalReal
Real.instLE
Norm.norm
NormedField.toNorm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.instFunLike
Rat.instNormedField
Polynomial.coeff
CommSemiring.toSemiring
CommRing.toCommSemiring
Rat.commRing
minpoly
DivisionRing.toRing
Field.toDivisionRing
DivisionRing.toRatAlgebra
NumberField.to_charZero
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instMax
Real.instOne
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
Real.instNatCast
Nat.choose
β€”NumberField.to_charZero
Algebra.IsSeparable.isIntegral
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsSeparable.of_integral
instIsDomain
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
PerfectField.ofCharZero
norm_algebraMap'
NormedDivisionRing.to_normOneClass
Polynomial.coeff_map
Polynomial.coeff_bdd_of_roots_le
minpoly.monic
IsAlgClosed.splits
minpoly.natDegree_le
Eq.subset
Set.instReflSubset
range_eval_eq_rootSet_minpoly
Multiset.mem_toFinset
finite_of_norm_le πŸ“–mathematicalβ€”Set.Finite
setOf
IsIntegral
Int.instCommRing
DivisionRing.toRing
Field.toDivisionRing
Ring.toIntAlgebra
β€”Real.instIsStrictOrderedRing
NumberField.to_charZero
instIsDomain
Polynomial.bUnion_roots_finite
Set.finite_Icc
Set.Finite.subset
minpoly.isIntegrallyClosed_eq_field_fractions'
Int.instIsDomain
Rat.isFractionRing
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
AddCommGroup.intIsScalarTower
Polynomial.Monic.natDegree_map
Rat.nontrivial
minpoly.monic
minpoly.natDegree_le
NumberField.to_finiteDimensional
Set.mem_Icc
abs_le
Int.instIsOrderedAddMonoid
Int.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
LE.le.trans
Eq.trans_le
Polynomial.coeff_map
eq_intCast
RingHom.instRingHomClass
Int.norm_cast_rat
Int.norm_eq_abs
Int.cast_abs
coeff_bdd_of_norm_le
Nat.le_ceil
Polynomial.mem_rootSet
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
minpoly.ne_zero
Int.instNontrivial
minpoly.aeval
instNonemptyRingHom πŸ“–mathematicalβ€”RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Fintype.card_pos_iff
NumberField.to_charZero
card
Module.finrank_pos
commRing_strongRankCondition
Rat.nontrivial
NumberField.to_finiteDimensional
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
instNonemptyRingHomOfIsAlgebraicRatOfIsAlgClosed πŸ“–mathematicalβ€”RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”IntermediateField.nonempty_algHom_of_splits
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
IsAlgClosed.splits
pow_eq_one_of_norm_eq_one πŸ“–mathematicalIsIntegral
Int.instCommRing
DivisionRing.toRing
Field.toDivisionRing
Ring.toIntAlgebra
Norm.norm
NormedField.toNorm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.instFunLike
Real
Real.instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”pow_eq_one_of_norm_le_one
NeZero.charZero_one
RCLike.charZero_rclike
norm_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
NumberField.to_charZero
Rat.isDomain
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Algebra.IsSeparable.isAlgebraic
Rat.nontrivial
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.of_integral
Algebra.IsIntegral.of_finite
NumberField.to_finiteDimensional
Rat.instCharZero
PerfectField.ofCharZero
le_of_eq
pow_eq_one_of_norm_le_one πŸ“–mathematicalIsIntegral
Int.instCommRing
DivisionRing.toRing
Field.toDivisionRing
Ring.toIntAlgebra
Real
Real.instLE
Norm.norm
NormedField.toNorm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.instFunLike
Real.instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Set.Infinite.exists_ne_map_eq_of_mapsTo
Set.infinite_univ
instInfiniteNat
Set.mem_setOf
IsIntegral.pow
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
pow_le_oneβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
finite_of_norm_le
tsub_pos_of_lt
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
mul_left_eq_selfβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
pow_add
LT.lt.le
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
Ne.lt_or_gt
range_eval_eq_rootSet_minpoly πŸ“–mathematicalβ€”Set.range
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
RingHom.instFunLike
Polynomial.rootSet
Rat.commRing
minpoly
DivisionRing.toRing
Field.toDivisionRing
DivisionRing.toRatAlgebra
NumberField.to_charZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
β€”NumberField.to_charZero
instIsDomain
Set.ext
Algebra.IsAlgebraic.range_eval_eq_rootSet_minpoly
NumberField.isAlgebraic

---

← Back to Index