Documentation Verification Report

TotallyRealComplex

📁 Source: Mathlib/NumberTheory/NumberField/InfinitePlace/TotallyRealComplex.lean

Statistics

MetricCount
DefinitionsIsTotallyComplex, IsTotallyReal, maximalRealSubfield
3
TheoremsisTotallyReal_bot, complexEmbedding_not_isReal, finrank, isComplex, mult_eq, nrRealPlaces_eq_zero, complexEmbedding_isReal, finrank, isReal, le_maximalRealSubfield, maximalRealSubfield_eq_top, mult_eq, nrComplexPlaces_eq_zero, ofRingEquiv, of_algebra, instIsAlgebraicSubtypeMemSubfield, instIsTotallyRealRat, instIsTotallyRealSubtypeMemIntermediateFieldRatOfIsAlgebraic, instIsTotallyRealSubtypeMemSubfieldOfIsAlgebraic, instIsTotallyRealSubtypeMemSubfieldTop, isTotallyComplex_iff, isTotallyComplex_of_algebra, isTotallyReal_iSup, isTotallyReal_iff, isTotallyReal_iff_le_maximalRealSubfield, isTotallyReal_iff_ofRingEquiv, isTotallyReal_maximalRealSubfield, isTotallyReal_sup, isTotallyReal_top_iff, maximalRealSubfield_eq_top_iff_isTotallyReal, mem_maximalRealSubfield_iff, nrComplexPlaces_eq_zero_iff, nrRealPlaces_eq_zero_iff, isTotallyReal_bot
34
Total37

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
isTotallyReal_bot 📖mathematicalNumberField.IsTotallyReal
IntermediateField
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
NumberField.IsTotallyReal.ofRingEquiv
NumberField.instIsTotallyRealRat
IsScalarTower.left

NumberField

Definitions

NameCategoryTheorems
IsTotallyComplex 📖CompData
6 mathmath: nrRealPlaces_eq_zero_iff, IsCyclotomicExtension.Rat.isTotallyComplex, IsCMField.to_isTotallyComplex, isTotallyComplex_iff, IsCMField.isTotallyComplex, isTotallyComplex_of_algebra
IsTotallyReal 📖CompData
16 mathmath: instIsTotallyRealSubtypeMemSubfieldOfIsAlgebraic, isTotallyReal_sup, isTotallyReal_top_iff, instIsTotallyRealSubtypeMemIntermediateFieldRatOfIsAlgebraic, IsTotallyReal.of_algebra, Subfield.isTotallyReal_bot, IntermediateField.isTotallyReal_bot, isTotallyReal_iff_ofRingEquiv, instIsTotallyRealSubtypeMemSubfieldTop, isTotallyReal_iff_le_maximalRealSubfield, isTotallyReal_iff, maximalRealSubfield_eq_top_iff_isTotallyReal, isTotallyReal_maximalRealSubfield, nrComplexPlaces_eq_zero_iff, IsTotallyReal.ofRingEquiv, instIsTotallyRealRat
maximalRealSubfield 📖CompOp
32 mathmath: IsCMField.isConj_complexConj, IsCMField.zpowers_complexConj_eq_top, IsCMField.equivInfinitePlace_symm_apply, IsCMField.units_rank_eq_units_rank, mem_maximalRealSubfield_iff, CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, CMExtension.eq_maximalRealSubfield, IsCMField.isQuadraticExtension, IsCMField.orderOf_complexConj, IsCMField.regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, IsCMField.complexConj_apply_apply, IsCMField.coe_ringOfIntegersComplexConj, IsCMField.equivInfinitePlace_apply, IsCMField.is_quadratic, IsCMField.complexConj_apply_eq_self, IsCMField.complexEmbedding_complexConj, CMExtension.equivMaximalRealSubfield_apply, isTotallyReal_iff_le_maximalRealSubfield, maximalRealSubfield_eq_top_iff_isTotallyReal, IsCMField.card_infinitePlace_eq_card_infinitePlace, IsTotallyReal.maximalRealSubfield_eq_top, isTotallyReal_maximalRealSubfield, IsCMField.ringOfIntegersComplexConj_eq_self_iff, IsCMField.mem_realUnits_iff, IsCMField.exists_isConj, IsCMField.complexConj_eq_self_iff, IsTotallyReal.le_maximalRealSubfield, IsCMField.RingOfIntegers.complexConj_eq_self_iff, IsCMField.infinitePlace_complexConj, IsCMField.complexConj_torsion, IsCMField.Units.complexConj_eq_self_iff, IsCMField.regOfFamily_realFunSystem

Theorems

NameKindAssumesProvesValidatesDepends On
instIsAlgebraicSubtypeMemSubfield 📖mathematicalAlgebra.IsAlgebraic
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subfield.toField
DivisionRing.toRing
Subfield.toAlgebra
Algebra.IsAlgebraic.tower_top
SubsemiringClass.instCharZero
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
IsScalarTower.rat
instIsTotallyRealRat 📖mathematicalIsTotallyReal
Rat.instField
Rat.instSubsingletonInfinitePlace
Rat.isReal_infinitePlace
instIsTotallyRealSubtypeMemIntermediateFieldRatOfIsAlgebraic 📖mathematicalIsTotallyReal
IntermediateField
Rat.instField
DivisionRing.toRatAlgebra
Field.toDivisionRing
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IsTotallyReal.of_algebra
instIsTotallyRealSubtypeMemSubfieldOfIsAlgebraic 📖mathematicalIsTotallyReal
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
Subfield.toField
IsTotallyReal.of_algebra
instIsTotallyRealSubtypeMemSubfieldTop 📖mathematicalIsTotallyReal
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
Top.top
Subfield.instTop
Subfield.toField
isTotallyReal_top_iff
isTotallyComplex_iff 📖mathematicalIsTotallyComplex
InfinitePlace.IsComplex
isTotallyComplex_of_algebra 📖mathematicalIsTotallyComplexInfinitePlace.IsComplex.of_comap
IsTotallyComplex.isComplex
isTotallyReal_iSup 📖mathematicalIsTotallyReal
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
Subfield.toField
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Subfield.instCompleteLattice
isEmpty_or_nonempty
iSup_of_empty
Subfield.isTotallyReal_bot
isTotallyReal_iff_le_maximalRealSubfield
iSup_le_iff
IsTotallyReal.le_maximalRealSubfield
isTotallyReal_iff 📖mathematicalIsTotallyReal
InfinitePlace.IsReal
isTotallyReal_iff_le_maximalRealSubfield 📖mathematicalIsTotallyReal
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
Subfield.toField
Preorder.toLE
PartialOrder.toPreorder
Subfield.instPartialOrder
maximalRealSubfield
IsTotallyReal.le_maximalRealSubfield
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
IsScalarTower.of_algebraMap_eq'
Algebra.IsAlgebraic.tower_bot
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsAlgebraicSubtypeMemSubfield
IsTotallyReal.of_algebra
isTotallyReal_maximalRealSubfield
isTotallyReal_iff_ofRingEquiv 📖mathematicalIsTotallyRealIsTotallyReal.ofRingEquiv
isTotallyReal_maximalRealSubfield 📖mathematicalIsTotallyReal
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
maximalRealSubfield
Subfield.toField
InfinitePlace.isReal_iff
ComplexEmbedding.isReal_iff
RingHom.ext
RingHom.star_apply
instIsAlgebraicSubtypeMemSubfield
ComplexEmbedding.lift_algebraMap_apply
Subtype.prop
isTotallyReal_sup 📖mathematicalIsTotallyReal
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subfield.instCompleteLattice
Subfield.toField
isTotallyReal_iff_le_maximalRealSubfield
sup_le_iff
isTotallyReal_top_iff 📖mathematicalIsTotallyReal
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
Top.top
Subfield.instTop
Subfield.toField
isTotallyReal_iff_ofRingEquiv
maximalRealSubfield_eq_top_iff_isTotallyReal 📖mathematicalmaximalRealSubfield
Top.top
Subfield
Field.toDivisionRing
Subfield.instTop
IsTotallyReal
Algebra.IsIntegral.tower_top
SubsemiringClass.instCharZero
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
IsScalarTower.rat
Algebra.IsAlgebraic.isIntegral
isTotallyReal_top_iff
isTotallyReal_iff_le_maximalRealSubfield
le_refl
IsTotallyReal.maximalRealSubfield_eq_top
mem_maximalRealSubfield_iff 📖mathematicalSubfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
maximalRealSubfield
Star.star
Complex
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
StarRing.toStarAddMonoid
Complex.instStarRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Complex.instSemiring
RingHom.instFunLike
nrComplexPlaces_eq_zero_iff 📖mathematicalInfinitePlace.nrComplexPlaces
IsTotallyReal
nrRealPlaces_eq_zero_iff 📖mathematicalInfinitePlace.nrRealPlaces
IsTotallyComplex

NumberField.IsTotallyComplex

Theorems

NameKindAssumesProvesValidatesDepends On
complexEmbedding_not_isReal 📖mathematicalNumberField.ComplexEmbedding.IsRealIff.not
NumberField.InfinitePlace.isReal_mk_iff
NumberField.InfinitePlace.not_isReal_iff_isComplex
isComplex
finrank 📖mathematicalModule.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
NumberField.InfinitePlace.nrComplexPlaces
NumberField.to_charZero
NumberField.InfinitePlace.card_add_two_mul_card_eq_rank
NumberField.nrRealPlaces_eq_zero_iff
zero_add
isComplex 📖mathematicalNumberField.InfinitePlace.IsComplex
mult_eq 📖mathematicalNumberField.InfinitePlace.multNumberField.InfinitePlace.mult_isComplex
isComplex
nrRealPlaces_eq_zero 📖mathematicalNumberField.InfinitePlace.nrRealPlacesNumberField.nrRealPlaces_eq_zero_iff

NumberField.IsTotallyReal

Theorems

NameKindAssumesProvesValidatesDepends On
complexEmbedding_isReal 📖mathematicalNumberField.ComplexEmbedding.IsRealNumberField.InfinitePlace.isReal_mk_iff
isReal
finrank 📖mathematicalModule.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
Field.toDivisionRing
NumberField.to_charZero
NumberField.InfinitePlace.nrRealPlaces
NumberField.to_charZero
NumberField.InfinitePlace.card_add_two_mul_card_eq_rank
NumberField.nrComplexPlaces_eq_zero_iff
MulZeroClass.mul_zero
add_zero
isReal 📖mathematicalNumberField.InfinitePlace.IsReal
le_maximalRealSubfield 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
Subfield.instPartialOrder
NumberField.maximalRealSubfield
RCLike.star_def
NumberField.ComplexEmbedding.conjugate_coe_eq
RingHom.congr_fun
NumberField.ComplexEmbedding.isReal_iff
NumberField.InfinitePlace.isReal_mk_iff
isReal
maximalRealSubfield_eq_top 📖mathematicalNumberField.maximalRealSubfield
Top.top
Subfield
Field.toDivisionRing
Subfield.instTop
top_unique
le_maximalRealSubfield
NumberField.instIsTotallyRealSubtypeMemSubfieldTop
mult_eq 📖mathematicalNumberField.InfinitePlace.multNumberField.InfinitePlace.mult_isReal
isReal
nrComplexPlaces_eq_zero 📖mathematicalNumberField.InfinitePlace.nrComplexPlacesNumberField.nrComplexPlaces_eq_zero_iff
ofRingEquiv 📖mathematicalNumberField.IsTotallyRealRingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
NumberField.InfinitePlace.isReal_comap_iff
isReal
of_algebra 📖mathematicalNumberField.IsTotallyRealNumberField.InfinitePlace.comap_surjective
NumberField.InfinitePlace.IsReal.comap
isReal

Subfield

Theorems

NameKindAssumesProvesValidatesDepends On
isTotallyReal_bot 📖mathematicalNumberField.IsTotallyReal
Subfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
bot_eq_of_charZero
NumberField.IsTotallyReal.ofRingEquiv
NumberField.instIsTotallyRealRat

---

← Back to Index