π Source: Mathlib/NumberTheory/NumberField/Units/Basic.lean
complexEmbedding
instCoeHTCUnitsRingOfIntegers
instFintypeSubtypeUnitsRingOfIntegersMemSubgroupTorsion
torsion
torsionOrder
coe_coe
coe_injective
coe_mul
coe_ne_zero
coe_neg_one
coe_one
coe_pow
coe_zpow
complexEmbedding_apply
complexEmbedding_inj
complexEmbedding_injective
even_torsionOrder
instIsCyclicSubtypeUnitsRingOfIntegersMemSubgroupTorsion
instNeZeroNatTorsionOrder
instNonemptySubtypeUnitsRingOfIntegersMemSubgroupTorsion
map_complexEmbedding_torsion
mem_torsion
norm
pos_at_place
rootsOfUnity_eq_one
rootsOfUnity_eq_torsion
sum_mult_mul_log
torsionOrder_eq_two_of_odd_finrank
torsionOrder_ne_zero
torsionOrder_pos
torsion_eq_one_or_neg_one_of_odd_finrank
isUnit_iff_norm
isUnit_iff
IsUnit
RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
RingOfIntegers.instCommRing
abs
Rat.instLattice
Rat.addGroup
RingOfIntegers.val
Rat.instField
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidHom.instFunLike
RingOfIntegers.norm
DivisionRing.toRatAlgebra
Field.toDivisionRing
to_charZero
abs_one
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
abs_eq_abs
Rat.RingOfIntegers.isUnit_iff
RingOfIntegers.isUnit_norm
to_finiteDimensional
Rat.instCharZero
NumberField.IsCMField.unitsComplexConj_torsion
NumberField.mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst
NumberField.mixedEmbedding.fundamentalCone.integerSetQuotEquivAssociates_apply
NumberField.mixedEmbedding.fundamentalCone.integerSetEquiv_apply_fst
logEmbeddingQuot_apply
NumberField.mixedEmbedding.fundamentalCone.integerSetTorsionSMul_smul_coe
fundSystem_mk
NumberField.IsCMField.indexRealUnits_mul_eq
dirichletUnitTheorem.map_logEmbedding_sup_torsion
NumberField.mixedEmbedding.fundamentalCone.unit_smul_mem_iff_mem_torsion
NumberField.mixedEmbedding.fundamentalCone.integerSetTorsionSMul_stabilizer
rank_modTorsion
NumberField.IsCMField.unitsMulComplexConjInv_apply_torsion
NumberField.mixedEmbedding.fundamentalCone.quotIntNorm_apply
regOfFamily_div_regulator
NumberField.IsCMField.closure_realFundSystem_sup_torsion
closure_fundSystem_sup_torsion_eq_top
dirichletUnitTheorem.logEmbedding_eq_zero_iff
NumberField.IsCMField.unitsMulComplexConjInv_ker
NumberField.IsCMField.unitsMulComplexConjInv_apply
NumberField.mixedEmbedding.fundamentalCone.integerSetToAssociates_eq_iff
logEmbeddingQuot_injective
Ideal.torsionMapQuot_injective
NumberField.IsCMField.indexRealUnits_eq_two_iff
logEmbeddingEquiv_apply
exist_unique_eq_mul_prod
finiteIndex_iff_sup_torsion_finiteIndex
instFiniteIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion
dirichletUnitTheorem.logEmbedding_ker
NumberField.IsCMField.map_unitsMulComplexConjInv_torsion
NumberField.IsCMField.complexConj_torsion
NumberField.IsCMField.index_unitsMulComplexConjInv_range_dvd
instFreeIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion
IsCyclotomicExtension.Rat.torsionOrder_eq
NumberField.dedekindZeta_residue_def
NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le
NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion
NumberField.Ideal.tendsto_norm_le_div_atTopβ
NumberField.Ideal.tendsto_norm_le_div_atTop
NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop
dvd_torsionOrder_of_isPrimitiveRoot
NumberField.RingOfIntegers.val
Units.val
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
RingHom
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Algebra.id
Semifield.toCommSemiring
Units
NumberField.RingOfIntegers.coe_injective
Units.val_injective
Units.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subtype.coe_injective
Units.ne_zero
NumberField.RingOfIntegers.instNontrivial
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
Units.instOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Monoid.toNatPow
Units.instMonoid
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Units.val_pow_eq_pow_val
DivInvMonoid.toZPow
Units.instDivInvMonoid
DivisionRing.toDivInvMonoid
map_zpow
MonoidHom.instMonoidHomClass
Complex
Complex.instSemiring
Units.instMulOneClass
Units.map_injective
RingHom.injective
DivisionRing.isSimpleRing
Complex.instNontrivial
Even
neg_one_mem_torsion
Subgroup.orderOf_coe
orderOf_units
Units.val_neg
Units.val_one
orderOf_neg_one
ringChar.eq_zero
NumberField.RingOfIntegers.instCharZero_1
NumberField.to_charZero
Nat.instAtLeastTwoHAddOfNat
even_iff_two_dvd
orderOf_dvd_card
IsCyclic
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpow
subgroup_units_cyclic
NumberField.RingOfIntegers.instIsDomain
Finite.of_fintype
MulZeroClass.toZero
Nat.instMulZeroClass
Fintype.instNeZeroNatCardOfNonempty
One.instNonempty
Subgroup.map
rootsOfUnity
CommRing.toCommMonoid
Complex.commRing
Subgroup.eq_of_le_of_card_ge
instIsDomain
map_rootsOfUnity
Nat.card_eq_fintype_card
Complex.card_rootsOfUnity
Nat.card_congr
torsionOrder.eq_1
le_refl
NumberField.InfinitePlace
Real
NumberField.InfinitePlace.instFunLikeReal
Real.instOne
NumberField.InfinitePlace.eq_iff_eq
torsion.eq_1
CommGroup.mem_torsion
IsOfFinOrder.norm_eq_one
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
MonoidHom.isOfFinOrder
isOfFinOrder_iff_pow_eq_one
NumberField.Embeddings.pow_eq_one_of_norm_eq_one
Complex.isAlgClosed
Complex.instCharZero
NumberField.RingOfIntegers.isIntegral_coe
Units.ext
NumberField.RingOfIntegers.ext
NumberField.RingOfIntegers.coe_eq_algebraMap
Ring.toSemiring
Rat.commRing
Algebra.norm
RingOfIntegers.coe_norm
NumberField.isUnit_iff_norm
Units.isUnit
Real.instLT
Real.instZero
NumberField.InfinitePlace.pos_iff
PNat.val
CommMonoid.toMonoid
mem_rootsOfUnity
orderOf_eq_one_iff
Nat.eq_one_of_dvd_coprimes
orderOf_dvd_of_pow_eq_one
Subtype.prop
orderOf_submonoid
one_pow
Subgroup.ext
pow_card_eq_one
Finset.sum
Real.instAddCommMonoid
Finset.univ
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.instMul
Real.instNatCast
NumberField.InfinitePlace.mult
Real.log
Real.log_prod
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
Real.instNontrivial
NumberField.InfinitePlace.instMonoidWithZeroHomClassReal
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsLocalRing.toNontrivial
Field.instIsLocalRing
NumberField.RingOfIntegers.instIsTorsionFree_2
Finset.sum_congr
Real.log_pow
Rat.cast_one
Real.log_one
NumberField.InfinitePlace.prod_eq_abs_norm
Odd
Nat.instSemiring
Module.finrank
Rat.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
Rat.commSemiring
Finset.card_eq_two
Finset.ext
Finset.mem_insert
Finset.mem_singleton
Finset.mem_univ
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
sub_eq_zero_of_eq
Nat.cast_zero
NumberField.InfinitePlace.IsPrimitiveRoot.nrRealPlaces_eq_zero_of_two_lt
IsPrimitiveRoot.orderOf
Mathlib.Tactic.Linarith.sub_nonpos_of_le
NumberField.InfinitePlace.nrRealPlaces_pos_of_odd_finrank
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
CharP.orderOf_eq_two_iff
IsDomain.to_noZeroDivisors
CharP.ofCharZero
le_antisymm
Mathlib.Tactic.IntervalCases.of_le_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
orderOf_pos_iff
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
isUnit_map_iff
isLocalHom_toRingHom
isLocalHom_equiv
RingEquivClass.toMulEquivClass
---
β Back to Index