Documentation Verification Report

DirichletTheorem

πŸ“ Source: Mathlib/NumberTheory/NumberField/Units/DirichletTheorem.lean

Statistics

MetricCount
DefinitionsbasisModTorsion, basisUnitLattice, logSpace, seq, wβ‚€, fundSystem, logEmbedding, logEmbeddingEquiv, logEmbeddingQuot, rank, unitLattice
11
Theoremsclosure_fundSystem_sup_torsion_eq_top, exists_unit, logEmbedding_component, logEmbedding_component_le, logEmbedding_eq_zero_iff, logEmbedding_ker, log_le_of_logEmbedding_le, map_logEmbedding_sup_torsion, mult_log_place_eq_zero, seq_decreasing, seq_ne_zero, seq_next, seq_norm_le, sum_logEmbedding_component, unitLattice_inter_ball_finite, unitLattice_span_eq_top, exist_unique_eq_mul_prod, finrank_eq_rank, fun_eq_repr, fundSystem_mk, instDiscrete_unitLattice, instFGUnitsRingOfIntegers, instFiniteIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion, instFiniteIntAdditiveUnitsRingOfIntegers, instFreeIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion, instZLattice_unitLattice, logEmbeddingEquiv_apply, logEmbeddingQuot_apply, logEmbeddingQuot_injective, logEmbedding_fundSystem, rank_modTorsion, unitLattice_rank
32
Total43

NumberField.Units

Definitions

NameCategoryTheorems
basisModTorsion πŸ“–CompOp
2 mathmath: fun_eq_repr, fundSystem_mk
basisUnitLattice πŸ“–CompOp
5 mathmath: logEmbedding_fundSystem, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_completeFamily_of_ne, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, basisOfIsMaxRank_fundSystem, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne
fundSystem πŸ“–CompOp
13 mathmath: NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', logEmbedding_fundSystem, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, isMaxRank_fundSystem, regulator_eq_det, fundSystem_mk, closure_fundSystem_sup_torsion_eq_top, regulator_eq_regOfFamily_fundSystem, exist_unique_eq_mul_prod, finrank_mul_regulator_eq_det, regulator_eq_det', basisOfIsMaxRank_fundSystem, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne
logEmbedding πŸ“–CompOp
14 mathmath: logEmbedding_fundSystem, span_basisOfIsMaxRank, logEmbeddingQuot_apply, basisOfIsMaxRank_apply, dirichletUnitTheorem.map_logEmbedding_sup_torsion, dirichletUnitTheorem.sum_logEmbedding_component, NumberField.mixedEmbedding.logMap_eq_logEmbedding, dirichletUnitTheorem.logEmbedding_eq_zero_iff, NumberField.mixedEmbedding.logMap_unit_smul, dirichletUnitTheorem.logEmbedding_component, logEmbeddingEquiv_apply, regulator_eq_det', dirichletUnitTheorem.logEmbedding_ker, regOfFamily_eq_det'
logEmbeddingEquiv πŸ“–CompOp
1 mathmath: logEmbeddingEquiv_apply
logEmbeddingQuot πŸ“–CompOp
2 mathmath: logEmbeddingQuot_apply, logEmbeddingQuot_injective
rank πŸ“–CompOp
30 mathmath: NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', finrank_eq_rank, logEmbedding_fundSystem, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_completeFamily_of_ne, NumberField.IsCMField.units_rank_eq_units_rank, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, regOfFamily_eq_det, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, NumberField.IsCMField.regulator_div_regulator_eq_two_pow_mul_indexRealUnits_inv, span_basisOfIsMaxRank, basisOfIsMaxRank_apply, regulator_eq_det, finrank_mul_regOfFamily_eq_det, fundSystem_mk, rank_modTorsion, regOfFamily_of_isMaxRank, regOfFamily_div_regulator, NumberField.IsCMField.closure_realFundSystem_sup_torsion, closure_fundSystem_sup_torsion_eq_top, abs_det_eq_abs_det, unitLattice_rank, isMaxRank_iff_closure_finiteIndex, exist_unique_eq_mul_prod, finrank_mul_regulator_eq_det, regulator_eq_det', basisOfIsMaxRank_fundSystem, regOfFamily_eq_det', NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, NumberField.IsCMField.regOfFamily_realFunSystem, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne
unitLattice πŸ“–CompOp
11 mathmath: logEmbedding_fundSystem, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_completeFamily_of_ne, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, instZLattice_unitLattice, dirichletUnitTheorem.unitLattice_span_eq_top, dirichletUnitTheorem.unitLattice_inter_ball_finite, instDiscrete_unitLattice, unitLattice_rank, logEmbeddingEquiv_apply, basisOfIsMaxRank_fundSystem, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne

Theorems

NameKindAssumesProvesValidatesDepends On
closure_fundSystem_sup_torsion_eq_top πŸ“–mathematicalβ€”Subgroup
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Units.instGroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
Subgroup.closure
Set.range
rank
fundSystem
torsion
Top.top
Subgroup.instTop
β€”Subgroup.eq_top_iff'
sup_comm
exist_unique_eq_mul_prod
Subgroup.mul_mem_sup
SetLike.coe_mem
Subgroup.prod_mem
Subgroup.zpow_mem
Subgroup.subset_closure
Set.mem_range_self
exist_unique_eq_mul_prod πŸ“–mathematicalβ€”ExistsUnique
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
torsion
Units.instMul
Finset.prod
rank
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
Finset.univ
Fin.fintype
DivInvMonoid.toZPow
Units.instDivInvMonoid
fundSystem
β€”RingHomInvPair.ids
Subgroup.normal_of_comm
QuotientGroup.eq_one_iff
QuotientGroup.mk_mul
QuotientGroup.mk_inv
ofMul_eq_zero
ofMul_mul
ofMul_inv
QuotientGroup.mk_prod
ofMul_prod
Finset.sum_congr
QuotientGroup.out_eq'
add_eq_zero_iff_eq_neg
neg_neg
Module.Basis.sum_repr
Finset.prod_congr
inv_mul_cancel_right
fun_eq_repr
mul_inv_cancel_right
finrank_eq_rank πŸ“–mathematicalβ€”Module.finrank
Real
dirichletUnitTheorem.logSpace
Real.semiring
Pi.addCommMonoid
NumberField.InfinitePlace
dirichletUnitTheorem.wβ‚€
Real.instAddCommMonoid
Pi.Function.module
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
rank
β€”Module.finrank_fintype_fun_eq_card
commRing_strongRankCondition
Real.instNontrivial
Fintype.card_subtype_compl
fun_eq_repr πŸ“–mathematicalUnits
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
torsion
Units.instMul
Finset.prod
rank
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
Finset.univ
Fin.fintype
DivInvMonoid.toZPow
Units.instDivInvMonoid
fundSystem
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Int.instSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
Additive
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Additive.addCommMonoid
QuotientGroup.Quotient.commGroup
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddCommGroup.toIntModule
Additive.addCommGroup
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
basisModTorsion
Equiv
Equiv.instEquivLike
Additive.ofMul
β€”Subgroup.normal_of_comm
QuotientGroup.mk_mul
QuotientGroup.eq_one_iff
one_mul
QuotientGroup.mk_prod
ofMul_prod
Finset.sum_congr
QuotientGroup.out_eq'
RingHomInvPair.ids
Module.Basis.repr_sum_self
fundSystem_mk πŸ“–mathematicalβ€”DFunLike.coe
Equiv
HasQuotient.Quotient
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
torsion
Additive
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
fundSystem
Module.Basis
rank
Int.instSemiring
Additive.addCommMonoid
CommGroup.toCommMonoid
QuotientGroup.Quotient.commGroup
Units.instCommGroupUnits
CommRing.toCommMonoid
AddCommGroup.toIntModule
Additive.addCommGroup
Module.Basis.instFunLike
basisModTorsion
β€”Quotient.out_eq'
instDiscrete_unitLattice πŸ“–mathematicalβ€”DiscreteTopology
dirichletUnitTheorem.logSpace
Submodule
Int.instSemiring
Pi.addCommMonoid
NumberField.InfinitePlace
dirichletUnitTheorem.wβ‚€
Real
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
SetLike.instMembership
Submodule.setLike
unitLattice
instTopologicalSpaceSubtype
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”discreteTopology_of_isOpen_singleton_zero
IsTopologicalAddGroup.toContinuousAdd
Submodule.topologicalAddGroup
Pi.topologicalAddGroup
instIsTopologicalAddGroupReal
isOpen_singleton_of_finite_mem_nhds
Subtype.t1Space
instT1SpaceForall
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
Metric.closedBall_mem_nhds
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Set.Finite.of_finite_image
Set.ext
Subtype.mem
dirichletUnitTheorem.unitLattice_inter_ball_finite
Set.injOn_of_injective
Subtype.val_injective
instFGUnitsRingOfIntegers πŸ“–mathematicalβ€”Monoid.FG
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Units.instMonoid
β€”Monoid.fg_iff_add_fg
AddGroup.fg_iff_addMonoid_fg
Module.Finite.iff_addGroup_fg
instFiniteIntAdditiveUnitsRingOfIntegers
instFiniteIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion πŸ“–mathematicalβ€”Module.Finite
Additive
HasQuotient.Quotient
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
torsion
Int.instSemiring
Additive.addCommMonoid
CommGroup.toCommMonoid
QuotientGroup.Quotient.commGroup
Units.instCommGroupUnits
CommRing.toCommMonoid
AddCommGroup.toIntModule
Additive.addCommGroup
β€”Module.Finite.equiv
instModuleFinite_of_discrete_submodule
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
instDiscrete_unitLattice
RingHomInvPair.ids
instFiniteIntAdditiveUnitsRingOfIntegers πŸ“–mathematicalβ€”Module.Finite
Additive
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Int.instSemiring
Additive.addCommMonoid
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
AddCommGroup.toIntModule
Additive.addCommGroup
β€”Module.finite_def
Submodule.fg_of_fg_map_of_fg_inf_ker
Subgroup.normal_of_comm
RingHomSurjective.ids
Submodule.map_top
LinearMap.range_eq_top
QuotientGroup.mk'_surjective
instFiniteIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion
inf_of_le_right
le_top
AddMonoidHom.coe_toIntLinearMap_ker
MonoidHom.coe_toAdditive_ker
QuotientGroup.ker_mk'
Submodule.fg_iff_addSubgroup_fg
AddSubgroup.toIntSubmodule_toAddSubgroup
AddGroup.fg_iff_addSubgroup_fg
Finite.of_fintype
AddGroup.fg_of_finite
instFreeIntAdditiveQuotientUnitsRingOfIntegersSubgroupTorsion πŸ“–mathematicalβ€”Module.Free
Additive
HasQuotient.Quotient
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
torsion
Int.instSemiring
Additive.addCommMonoid
CommGroup.toCommMonoid
QuotientGroup.Quotient.commGroup
Units.instCommGroupUnits
CommRing.toCommMonoid
AddCommGroup.toIntModule
Additive.addCommGroup
β€”Module.Free.of_equiv
instModuleFree_of_discrete_submodule
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
instDiscrete_unitLattice
RingHomInvPair.ids
instZLattice_unitLattice πŸ“–mathematicalβ€”IsZLattice
Real
Real.normedField
dirichletUnitTheorem.logSpace
Pi.normedAddCommGroup
NumberField.InfinitePlace
dirichletUnitTheorem.wβ‚€
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.normedAddCommGroup
Pi.normedSpace
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
unitLattice
instDiscrete_unitLattice
β€”instDiscrete_unitLattice
dirichletUnitTheorem.unitLattice_span_eq_top
logEmbeddingEquiv_apply πŸ“–mathematicalβ€”dirichletUnitTheorem.logSpace
Submodule
Int.instSemiring
Pi.addCommMonoid
NumberField.InfinitePlace
dirichletUnitTheorem.wβ‚€
Real
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
SetLike.instMembership
Submodule.setLike
unitLattice
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Additive
HasQuotient.Quotient
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
torsion
Additive.addCommMonoid
CommGroup.toCommMonoid
QuotientGroup.Quotient.commGroup
Units.instCommGroupUnits
CommRing.toCommMonoid
Submodule.addCommMonoid
Additive.addCommGroup
Submodule.addCommGroup
Int.instRing
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
logEmbeddingEquiv
Equiv
Equiv.instEquivLike
Additive.ofMul
AddMonoidHom
AddZeroClass.toAddZero
Additive.addZeroClass
Units.instMulOneClass
Pi.addZeroClass
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
logEmbedding
β€”RingHomInvPair.ids
logEmbeddingQuot_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Additive
HasQuotient.Quotient
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
torsion
dirichletUnitTheorem.logSpace
AddZeroClass.toAddZero
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
Subgroup.normal_of_comm
Units.instCommGroupUnits
CommRing.toCommMonoid
Pi.addZeroClass
NumberField.InfinitePlace
dirichletUnitTheorem.wβ‚€
Real
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
logEmbeddingQuot
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
Units.instMulOneClass
logEmbedding
β€”Subgroup.normal_of_comm
logEmbeddingQuot_injective πŸ“–mathematicalβ€”Additive
HasQuotient.Quotient
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
torsion
dirichletUnitTheorem.logSpace
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Additive.addZeroClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
Subgroup.normal_of_comm
Units.instCommGroupUnits
CommRing.toCommMonoid
Pi.addZeroClass
NumberField.InfinitePlace
dirichletUnitTheorem.wβ‚€
Real
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
logEmbeddingQuot
β€”Subgroup.normal_of_comm
EmbeddingLike.apply_eq_iff_eq
EquivLike.toEmbeddingLike
MonoidHom.normal_ker
QuotientGroup.kerLift_injective
logEmbedding_fundSystem πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Additive
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
dirichletUnitTheorem.logSpace
AddZeroClass.toAddZero
Additive.addZeroClass
Units.instMulOneClass
Pi.addZeroClass
NumberField.InfinitePlace
dirichletUnitTheorem.wβ‚€
Real
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
logEmbedding
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
fundSystem
Submodule
Int.instSemiring
Pi.addCommMonoid
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
SetLike.instMembership
Submodule.setLike
unitLattice
Module.Basis
rank
Submodule.addCommMonoid
Submodule.addCommGroup
Int.instRing
Module.Basis.instFunLike
basisUnitLattice
β€”basisUnitLattice.eq_1
RingHomInvPair.ids
Module.Basis.map_apply
logEmbeddingEquiv_apply
rank_modTorsion πŸ“–mathematicalβ€”Module.finrank
Additive
HasQuotient.Quotient
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Subgroup
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
torsion
Int.instSemiring
Additive.addCommMonoid
CommGroup.toCommMonoid
QuotientGroup.Quotient.commGroup
Units.instCommGroupUnits
CommRing.toCommMonoid
AddCommGroup.toIntModule
Additive.addCommGroup
rank
β€”LinearEquiv.finrank_eq
RingHomInvPair.ids
unitLattice_rank
unitLattice_rank πŸ“–mathematicalβ€”Module.finrank
dirichletUnitTheorem.logSpace
Submodule
Int.instSemiring
Pi.addCommMonoid
NumberField.InfinitePlace
dirichletUnitTheorem.wβ‚€
Real
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
SetLike.instMembership
Submodule.setLike
unitLattice
Submodule.addCommMonoid
Submodule.addCommGroup
Int.instRing
rank
β€”finrank_eq_rank
ZLattice.rank
Real.instIsStrictOrderedRing
instHasSolidNormReal
FiniteDimensional.finiteDimensional_pi'
Subtype.finite
Finite.of_fintype
FiniteDimensional.rclike_to_real
pi_properSpace
instProperSpaceReal
instDiscrete_unitLattice
instZLattice_unitLattice

NumberField.Units.dirichletUnitTheorem

Definitions

NameCategoryTheorems
logSpace πŸ“–CompOp
30 mathmath: NumberField.mixedEmbedding.logMap_one, NumberField.Units.finrank_eq_rank, NumberField.Units.logEmbedding_fundSystem, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_completeFamily_of_ne, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, NumberField.Units.instZLattice_unitLattice, NumberField.Units.span_basisOfIsMaxRank, NumberField.Units.logEmbeddingQuot_apply, NumberField.Units.basisOfIsMaxRank_apply, map_logEmbedding_sup_torsion, sum_logEmbedding_component, unitLattice_span_eq_top, NumberField.Units.regOfFamily_of_isMaxRank, NumberField.mixedEmbedding.logMap_eq_logEmbedding, unitLattice_inter_ball_finite, logEmbedding_eq_zero_iff, NumberField.Units.instDiscrete_unitLattice, NumberField.mixedEmbedding.logMap_unit_smul, logEmbedding_component, NumberField.Units.logEmbeddingQuot_injective, NumberField.mixedEmbedding.logMap_real, NumberField.Units.unitLattice_rank, NumberField.Units.logEmbeddingEquiv_apply, NumberField.Units.regulator_eq_det', logEmbedding_ker, NumberField.mixedEmbedding.logMap_zero, NumberField.Units.basisOfIsMaxRank_fundSystem, NumberField.Units.regOfFamily_eq_det', NumberField.mixedEmbedding.logMap_mul, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne
seq πŸ“–CompOp
2 mathmath: seq_decreasing, seq_norm_le
wβ‚€ πŸ“–CompOp
51 mathmath: NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', NumberField.mixedEmbedding.logMap_one, NumberField.mixedEmbedding.fundamentalCone.interior_paramSet, NumberField.Units.finrank_eq_rank, NumberField.Units.logEmbedding_fundSystem, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_completeFamily_of_ne, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, NumberField.Units.instZLattice_unitLattice, NumberField.Units.span_basisOfIsMaxRank, NumberField.Units.logEmbeddingQuot_apply, NumberField.Units.basisOfIsMaxRank_apply, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_completeFamily_of_eq, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, map_logEmbedding_sup_torsion, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_eq, sum_logEmbedding_component, unitLattice_span_eq_top, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_eq, NumberField.mixedEmbedding.fundamentalCone.prod_expMapBasis_pow, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_apply, NumberField.Units.regOfFamily_of_isMaxRank, NumberField.mixedEmbedding.logMap_eq_logEmbedding, NumberField.mixedEmbedding.logMap_apply_of_norm_eq_one, unitLattice_inter_ball_finite, logEmbedding_eq_zero_iff, NumberField.Units.instDiscrete_unitLattice, NumberField.mixedEmbedding.fundamentalCone.closure_paramSet, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_paramSet_exp, NumberField.mixedEmbedding.logMap_unit_smul, NumberField.mixedEmbedding.fundamentalCone.logMap_expMap, logEmbedding_component, NumberField.mixedEmbedding.logMap_apply, NumberField.Units.logEmbeddingQuot_injective, NumberField.mixedEmbedding.logMap_apply_of_norm_one, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply'', NumberField.mixedEmbedding.logMap_real, NumberField.Units.unitLattice_rank, NumberField.Units.logEmbeddingEquiv_apply, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_expMap_symm, NumberField.Units.regulator_eq_det', logEmbedding_ker, NumberField.mixedEmbedding.logMap_zero, NumberField.Units.basisOfIsMaxRank_fundSystem, NumberField.Units.regOfFamily_eq_det', NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, NumberField.mixedEmbedding.logMap_mul, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne

Theorems

NameKindAssumesProvesValidatesDepends On
exists_unit πŸ“–mathematicalβ€”Real
Real.instLT
Real.log
DFunLike.coe
NumberField.InfinitePlace
NumberField.InfinitePlace.instFunLikeReal
RingHom
NumberField.RingOfIntegers
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Real.instZero
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
mul_comm
ENNReal.exists_nat_mul_gt
ENNReal.coe_ne_zero
NumberField.mixedEmbedding.convexBodyLTFactor_ne_zero
ne_of_lt
NumberField.mixedEmbedding.minkowskiBound_lt_top
Set.Finite.exists_lt_map_eq_of_forall_mem
NumberField.RingOfIntegers.instNontrivial
NumberField.RingOfIntegers.instFreeInt
instInfiniteNat
Set.mem_setOf_eq
Ideal.absNorm_span_singleton
Module.IsNoetherian.finite
NumberField.RingOfIntegers.instIsNoetherianInt
seq_norm_le
Ideal.finite_setOf_absNorm_le
NumberField.RingOfIntegers.instCharZero_1
NumberField.to_charZero
Ideal.span_singleton_eq_span_singleton
NumberField.RingOfIntegers.instIsDomain
Real.log_neg
NumberField.Units.pos_at_place
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_assoc
inv_mul_cancelβ‚€
seq_ne_zero
one_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
NumberField.InfinitePlace.instMonoidWithZeroHomClassReal
map_invβ‚€
mul_inv_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
NumberField.InfinitePlace.pos_iff
mul_one
seq_decreasing
logEmbedding_component πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Additive
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
logSpace
AddZeroClass.toAddZero
Additive.addZeroClass
Units.instMulOneClass
Pi.addZeroClass
NumberField.InfinitePlace
wβ‚€
Real
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
NumberField.Units.logEmbedding
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
Real.instMul
Real.instNatCast
NumberField.InfinitePlace.mult
Real.log
NumberField.InfinitePlace.instFunLikeReal
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Units.val
β€”β€”
logEmbedding_component_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
logSpace
NormedRing.toNorm
Pi.normedRing
NumberField.InfinitePlace
wβ‚€
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
NormedCommRing.toNormedRing
Real.normedCommRing
DFunLike.coe
AddMonoidHom
Additive
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
AddZeroClass.toAddZero
Additive.addZeroClass
Units.instMulOneClass
Pi.addZeroClass
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
NumberField.Units.logEmbedding
abs
Real.lattice
Real.instAddGroup
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”CanLift.prf
NNReal.canLift
Finset.mem_univ
logEmbedding_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Additive
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
logSpace
AddZeroClass.toAddZero
Additive.addZeroClass
Units.instMulOneClass
Pi.addZeroClass
NumberField.InfinitePlace
wβ‚€
Real
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
NumberField.Units.logEmbedding
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
Pi.instZero
Real.instZero
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NumberField.Units.torsion
β€”NumberField.Units.mem_torsion
sum_logEmbedding_component
Finset.sum_eq_zero
mult_log_place_eq_zero
neg_eq_zero
neg_mul
logEmbedding_component
Real.log_one
MulZeroClass.mul_zero
Pi.zero_apply
logEmbedding_ker πŸ“–mathematicalβ€”AddMonoidHom.ker
Additive
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Additive.addGroup
Units.instGroup
logSpace
Pi.addZeroClass
NumberField.InfinitePlace
wβ‚€
Real
AddMonoid.toAddZeroClass
Real.instAddMonoid
NumberField.Units.logEmbedding
DFunLike.coe
OrderIso
Subgroup
AddSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
AddSubgroup.instPartialOrder
instFunLikeOrderIso
Subgroup.toAddSubgroup
NumberField.Units.torsion
β€”AddSubgroup.ext
AddMonoidHom.mem_ker
ofMul_toMul
logEmbedding_eq_zero_iff
log_le_of_logEmbedding_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
logSpace
NormedRing.toNorm
Pi.normedRing
NumberField.InfinitePlace
wβ‚€
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
NormedCommRing.toNormedRing
Real.normedCommRing
DFunLike.coe
AddMonoidHom
Additive
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
AddZeroClass.toAddZero
Additive.addZeroClass
Units.instMulOneClass
Pi.addZeroClass
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
NumberField.Units.logEmbedding
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
abs
Real.lattice
Real.instAddGroup
Real.log
NumberField.InfinitePlace.instFunLikeReal
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Units.val
Real.instMul
Real.instNatCast
Fintype.card
β€”one_mul
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
NumberField.InfinitePlace.mult.eq_1
Mathlib.Meta.NormNum.isNat_le_true
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNat_natCast
le_rfl
Nat.cast_zero
sum_logEmbedding_component
LE.le.trans
le_of_eq
norm_sum_le
le_trans
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Nat.abs_cast
Finset.sum_congr
norm_neg
norm_mul
NormedDivisionRing.toNormMulClass
Finset.sum_le_card_nsmul
logEmbedding_component_le
nsmul_eq_mul
Fintype.card_subtype_compl
Fintype.card_unique
Real.instZeroLEOneClass
RCLike.charZero_rclike
Nat.instOrderedSub
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Nat.cast_nonneg
abs_mul
logEmbedding_component
Nat.one_le_cast
Fintype.card_pos
NumberField.instNonemptyInfinitePlaceOfRingHomComplex
NumberField.Embeddings.instNonemptyRingHom
Complex.instCharZero
Complex.isAlgClosed
map_logEmbedding_sup_torsion πŸ“–mathematicalβ€”AddSubgroup.map
Additive
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Additive.addGroup
Units.instGroup
logSpace
Pi.addGroup
NumberField.InfinitePlace
wβ‚€
Real
Real.instAddGroup
NumberField.Units.logEmbedding
AddSubgroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
AddSubgroup.instCompleteLattice
DFunLike.coe
OrderIso
Subgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
AddSubgroup.instPartialOrder
instFunLikeOrderIso
Subgroup.toAddSubgroup
NumberField.Units.torsion
β€”logEmbedding_ker
AddSubgroup.map_eq_map_iff
sup_right_idem
mult_log_place_eq_zero πŸ“–mathematicalβ€”Real
Real.instMul
Real.instNatCast
NumberField.InfinitePlace.mult
Real.log
DFunLike.coe
NumberField.InfinitePlace
NumberField.InfinitePlace.instFunLikeReal
RingHom
NumberField.RingOfIntegers
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Real.instZero
Real.instOne
β€”mul_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
NumberField.InfinitePlace.mult_coe_ne_zero
Real.log_eq_zero
LT.lt.ne'
NumberField.Units.pos_at_place
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
NonnegHomClass.apply_nonneg
NumberField.InfinitePlace.instNonnegHomClassReal
seq_decreasing πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
NumberField.mixedEmbedding.minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
NumberField.mixedEmbedding.convexBodyLTFactor
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Real
Real.instLT
DFunLike.coe
NumberField.InfinitePlace
NumberField.InfinitePlace.instFunLikeReal
RingHom
RingHom.instFunLike
algebraMap
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
seq
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
eq_or_lt_of_le
NumberField.to_charZero
seq_next
Subtype.prop
lt_trans
seq_ne_zero πŸ“–β€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
NumberField.mixedEmbedding.minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
NumberField.mixedEmbedding.convexBodyLTFactor
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.coe_ne_zero_iff
Subtype.prop
seq_next πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
NumberField.mixedEmbedding.minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
NumberField.mixedEmbedding.convexBodyLTFactor
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Real
Real.instLT
DFunLike.coe
NumberField.InfinitePlace
NumberField.InfinitePlace.instFunLikeReal
NumberField.RingOfIntegers.val
abs
Rat.instLattice
Rat.addGroup
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
Rat.commRing
MonoidHom.instFunLike
Algebra.norm
DivisionRing.toRatAlgebra
NumberField.to_charZero
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
NumberField.RingOfIntegers.coe_ne_zero_iff
Nat.instAtLeastTwoHAddOfNat
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
AbsoluteValue.nonneg
Complex.instNontrivial
Real.instIsOrderedRing
Nonneg.mk_eq_zero
div_eq_zero_iff
map_eq_zero
Real.instNontrivial
NumberField.InfinitePlace.instMonoidWithZeroHomClassReal
RCLike.charZero_rclike
NumberField.to_charZero
NumberField.mixedEmbedding.adjust_f
NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_lt
Complex.instFiniteDimensionalReal
Complex.borelSpace
NumberField.mixedEmbedding.convexBodyLT_volume
LT.lt.trans
div_lt_self
NumberField.InfinitePlace.pos_iff
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Rat.cast_le
Rat.cast_natCast
NumberField.InfinitePlace.prod_eq_abs_norm
Finset.prod_le_prod
IsOrderedRing.toPosMulMono
pow_nonneg
IsOrderedRing.toZeroLEOneClass
NonnegHomClass.apply_nonneg
NumberField.InfinitePlace.instNonnegHomClassReal
pow_le_pow_leftβ‚€
IsOrderedRing.toMulPosMono
LT.lt.le
Finset.prod_congr
le_of_eq
seq_norm_le πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
NumberField.mixedEmbedding.minkowskiBound
Units
FractionalIdeal
NumberField.RingOfIntegers
NumberField.RingOfIntegers.instCommRing
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
MonoidWithZero.toMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FractionalIdeal.semifield
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Units.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
NumberField.mixedEmbedding.convexBodyLTFactor
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
CommRing.toRing
Int.instCommRing
MonoidHom.instFunLike
Algebra.norm
Ring.toIntAlgebra
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
seq
β€”NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsDedekindDomain
Mathlib.Tactic.Contrapose.contrapose₁
CharP.cast_eq_zero
CharP.ofCharZero
ENNReal.instCharZero
MulZeroClass.mul_zero
ENNReal.instCanonicallyOrderedAdd
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
Nat.cast_le
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
Nat.cast_natAbs
Int.cast_abs
Rat.instIsStrictOrderedRing
NumberField.to_charZero
Algebra.coe_norm_int
seq_next
Subtype.prop
sum_logEmbedding_component πŸ“–mathematicalβ€”Finset.sum
NumberField.InfinitePlace
wβ‚€
Real
Real.instAddCommMonoid
Finset.univ
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
DFunLike.coe
AddMonoidHom
Additive
Units
NumberField.RingOfIntegers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
logSpace
AddZeroClass.toAddZero
Additive.addZeroClass
Units.instMulOneClass
Pi.addZeroClass
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
NumberField.Units.logEmbedding
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
Real.instMul
Real.instNeg
Real.instNatCast
NumberField.InfinitePlace.mult
Real.log
NumberField.InfinitePlace.instFunLikeReal
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
NumberField.RingOfIntegers.instAlgebra_1
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
Semifield.toCommSemiring
Units.val
β€”NumberField.Units.sum_mult_mul_log
Finset.sum_congr
neg_mul
add_eq_zero_iff_eq_neg
add_comm
Fintype.sum_eq_add_sum_subtype_ne
unitLattice_inter_ball_finite πŸ“–mathematicalβ€”Set.Finite
logSpace
Set
Set.instInter
SetLike.coe
Submodule
Int.instSemiring
Pi.addCommMonoid
NumberField.InfinitePlace
wβ‚€
Real
Real.instAddCommMonoid
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
Submodule.setLike
NumberField.Units.unitLattice
Metric.closedBall
pseudoMetricSpacePi
Subtype.fintype
NumberField.InfinitePlace.NumberField.InfinitePlace.fintype
Real.pseudoMetricSpace
Pi.instZero
Real.instZero
β€”lt_or_ge
Metric.closedBall_eq_empty
Set.inter_empty
Set.finite_empty
Set.Finite.of_finite_image
Set.Finite.subset
NumberField.Embeddings.finite_of_norm_le
Complex.isAlgClosed
Complex.instCharZero
Function.Injective.injOn
NumberField.Units.coe_injective
Set.Finite.image
Subtype.prop
NumberField.InfinitePlace.le_iff_le
Real.log_le_iff_le_exp
NumberField.InfinitePlace.pos_iff
NumberField.Units.coe_ne_zero
LE.le.trans
le_abs_self
log_le_of_logEmbedding_le
mem_closedBall_zero_iff
unitLattice_span_eq_top πŸ“–mathematicalβ€”Submodule.span
Real
logSpace
Real.semiring
Pi.addCommMonoid
NumberField.InfinitePlace
wβ‚€
Real.instAddCommMonoid
Pi.Function.module
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
SetLike.coe
Submodule
Int.instSemiring
AddCommGroup.toIntModule
Pi.addCommGroup
Real.instAddCommGroup
Submodule.setLike
NumberField.Units.unitLattice
Top.top
Submodule.instTop
β€”le_antisymm
le_top
Subtype.finite
Finite.of_fintype
exists_unit
Module.Basis.det_apply
det_ne_zero_of_sum_col_lt_diag
Finset.sum_congr
Module.Basis.coePiBasisFun.toMatrix_eq_transpose
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
abs_of_neg
mul_neg_of_pos_of_neg
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
NumberField.InfinitePlace.mult.eq_1
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Iff.not
Finset.ne_of_mem_erase
Finset.sum_neg_distrib
sub_neg_eq_add
Finset.sum_erase_eq_sub
Finset.mem_univ
add_comm_sub
add_pos_of_nonneg_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sub_nonneg
le_abs_self
sum_logEmbedding_component
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Meta.NormNum.isInt_lt_true
Real.instNontrivial
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Subtype.prop
Module.Basis.is_basis_iff_det
isUnit_iff_ne_zero
Submodule.span_monotone

---

← Back to Index