Documentation Verification Report

Ostrowski

๐Ÿ“ Source: Mathlib/NumberTheory/Ostrowski.lean

Statistics

MetricCount
Definitionspadic, real
2
Theoremsapply_le_sum_digits, eq_on_nat_iff_eq, eq_one_of_not_dvd, equiv_on_nat_iff_equiv, equiv_padic_of_bounded, equiv_real_of_unbounded, equiv_real_or_padic, exists_minimal_nat_zero_lt_and_lt_one, exists_nat_rpow_iff_isEquiv, exists_pos_eq_pow_neg, is_prime_of_minimal_nat_zero_lt_and_lt_one, le_pow_log, not_real_equiv_padic, not_real_isEquiv_padic, one_lt_of_not_bounded, padic_eq_padicNorm, padic_le_one, real_eq_abs
18
Total20

Rat.AbsoluteValue

Definitions

NameCategoryTheorems
padic ๐Ÿ“–CompOp
6 mathmath: equiv_real_or_padic, padic_eq_padicNorm, padic_le_one, not_real_equiv_padic, equiv_padic_of_bounded, not_real_isEquiv_padic
real ๐Ÿ“–CompOp
5 mathmath: equiv_real_of_unbounded, equiv_real_or_padic, not_real_equiv_padic, real_eq_abs, not_real_isEquiv_padic

Theorems

NameKindAssumesProvesValidatesDepends On
apply_le_sum_digits ๐Ÿ“–mathematicalโ€”Real
Real.instLE
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
Real.instAdd
Real.instZero
Real.instMul
Real.instNatCast
Monoid.toNatPow
Real.instMonoid
Nat.digits
โ€”lt_of_le_of_lt
AbsoluteValue.apply_nat_le_self
Real.instIsDomain
Real.instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Nat.digits_lt_base
Nat.ofDigits_digits
Nat.ofDigits_eq_sum_mapIdx
Nat.cast_list_sum
AbsoluteValue.listSum_le
List.sum_le_sum
covariant_swap_add_of_covariant_add
Nat.cast_mul
Nat.cast_pow
map_mul
AbsoluteValue.mulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
Rat.nontrivial
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
LT.lt.le
tsub_zero
Nat.instOrderedSub
zero_add
pow_nonneg
IsOrderedRing.toPosMulMono
AbsoluteValue.nonneg
eq_on_nat_iff_eq ๐Ÿ“–mathematicalโ€”DFunLike.coe
AbsoluteValue
Real
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
โ€”AbsoluteValue.ext
Rat.num_div_den
map_divโ‚€
AbsoluteValue.monoidWithZeroHomClass
Real.instIsDomain
Rat.nontrivial
AbsoluteValue.eq_on_nat_iff_eq_on_int
Real.instIsOrderedRing
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
eq_one_of_not_dvd ๐Ÿ“–โ€”Real
Real.instLE
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
Real.instOne
Real.instLT
Real.instZero
โ€”โ€”le_antisymm
Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
IsCoprime.pow
Nat.Coprime.isCoprime
Nat.Prime.coprime_iff_not_dvd
is_prime_of_minimal_nat_zero_lt_and_lt_one
Real.rpow_natCast
Real.rpow_lt_rpow_of_exponent_gt
Nat.cast_add
Nat.cast_one
lt_add_of_le_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.le_ceil
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.rpow_le_rpow_of_exponent_ge
LT.lt.le
one_div
Real.log_inv
neg_div
div_le_divโ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
Mathlib.Meta.Positivity.log_pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
le_refl
Real.log_neg
lt_sup_iff
sup_lt_iff
neg_le_neg
Real.log_le_log
Real.rpow_logb
LT.lt.ne
one_half_pos
lt_irrefl
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
Real.instIsDomain
Rat.nontrivial
Nat.cast_pow
Int.cast_pow
Int.cast_natCast
Int.cast_one
AbsoluteValue.add_le'
map_mul
AbsoluteValue.mulHomClass
map_pow
add_le_add
covariant_swap_add_of_covariant_add
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
AbsoluteValue.apply_natAbs_eq
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
pow_nonneg
IsOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
NonnegHomClass.apply_nonneg
AbsoluteValue.nonnegHomClass
one_mul
AbsoluteValue.pos
Nat.cast_ne_zero
Rat.instCharZero
dvd_zero
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
le_sup_left
le_sup_right
equiv_on_nat_iff_equiv ๐Ÿ“–mathematicalโ€”Real
Real.instLT
Real.instZero
Real.instPow
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
AbsoluteValue.IsEquiv
โ€”exists_nat_rpow_iff_isEquiv
equiv_padic_of_bounded ๐Ÿ“–mathematicalAbsoluteValue.IsNontrivial
Rat.semiring
Real
Real.semiring
Real.partialOrder
Real.instLE
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
Real.instOne
ExistsUnique
Fact
Nat.Prime
AbsoluteValue.IsEquiv
padic
โ€”exists_minimal_nat_zero_lt_and_lt_one
is_prime_of_minimal_nat_zero_lt_and_lt_one
exists_pos_eq_pow_neg
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
inv_ne_zero
LT.lt.ne'
eq_or_ne
CharP.cast_eq_zero
CharP.ofCharZero
Rat.instCharZero
AbsoluteValue.map_zero
Real.zero_rpow
Nat.exists_eq_pow_mul_and_not_dvd
Nat.Prime.ne_one
Nat.cast_mul
Nat.cast_pow
map_mul
AbsoluteValue.mulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
Real.instIsDomain
Rat.nontrivial
eq_one_of_not_dvd
padicNorm.padicNorm_p_of_prime
Rat.cast_inv
RCLike.charZero_rclike
Rat.cast_natCast
inv_pow
Nat.cast_nonneg
Real.instIsOrderedRing
neg_mul
mul_one
padicNorm.nat_eq_one_iff
Rat.cast_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚ƒ
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚‚
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Fact.elim
Nat.Prime.coprime_iff_not_dvd
Nat.coprime_primes
Real.one_rpow
equiv_real_of_unbounded ๐Ÿ“–mathematicalReal
Real.instLE
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
Real.instOne
AbsoluteValue.IsEquiv
real
โ€”Mathlib.Tactic.Contrapose.contraposeโ‚‚
CharP.cast_eq_zero
CharP.ofCharZero
Rat.instCharZero
AbsoluteValue.map_zero
Real.instZeroLEOneClass
Nat.cast_one
AbsoluteValue.map_one
Real.instIsDomain
Rat.nontrivial
exists_nat_rpow_iff_isEquiv
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.logb_pos
Nat.one_lt_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
RCLike.charZero_rclike
one_lt_of_not_bounded
lt_trichotomy
Real.instNontrivial
AbsoluteValue.monoidWithZeroHomClass
ne_zero_of_lt
LT.lt.ne'
Int.cast_natCast
ne_of_not_le
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
NonnegHomClass.apply_nonneg
AbsoluteValue.nonnegHomClass
Real.zero_rpow
Real.one_rpow
real_eq_abs
Nat.abs_cast
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.cast_natCast
Real.rpow_inv_eq
Nat.cast_nonneg
Real.logb_ne_zero_of_pos_of_ne_one
lt_of_not_ge
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
Real.rpow_logb
map_pos_of_ne_zero
MulRingNormClass.toAddGroupNormClass
AbsoluteValue.instMulRingNormClassOfNontrivialOfIsDomain
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
equiv_real_or_padic ๐Ÿ“–mathematicalAbsoluteValue.IsNontrivial
Rat.semiring
Real
Real.semiring
Real.partialOrder
AbsoluteValue
AbsoluteValue.instSetoid
real
ExistsUnique
Fact
Nat.Prime
padic
โ€”equiv_padic_of_bounded
equiv_real_of_unbounded
exists_minimal_nat_zero_lt_and_lt_one ๐Ÿ“–mathematicalAbsoluteValue.IsNontrivial
Rat.semiring
Real
Real.semiring
Real.partialOrder
Real.instLE
DFunLike.coe
AbsoluteValue
AbsoluteValue.funLike
Real.instOne
Real.instLT
Real.instZero
โ€”Mathlib.Tactic.Contrapose.contraposeโ‚
Mathlib.Tactic.Push.not_and_eq
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Real.instIsOrderedRing
Real.instNontrivial
Iff.not_left
AbsoluteValue.isNontrivial_iff_ne_trivial
eq_on_nat_iff_eq
eq_or_ne
CharP.cast_eq_zero
CharP.ofCharZero
Rat.instCharZero
AbsoluteValue.map_zero
AbsoluteValue.trivial_apply
map_pos_of_ne_zero
Real.instIsOrderedAddMonoid
MulRingNormClass.toAddGroupNormClass
AbsoluteValue.instMulRingNormClassOfNontrivialOfIsDomain
Rat.nontrivial
Real.instIsDomain
Nat.cast_ne_zero
lt_of_le_of_ne
Nat.sInf_mem
Nat.sInf_le
exists_nat_rpow_iff_isEquiv ๐Ÿ“–mathematicalโ€”Real
Real.instLT
Real.instZero
Real.instPow
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
AbsoluteValue.IsEquiv
โ€”AbsoluteValue.isEquiv_iff_exists_rpow_eq
Rat.num_div_den
map_divโ‚€
AbsoluteValue.monoidWithZeroHomClass
Real.instIsDomain
Rat.nontrivial
Real.div_rpow
NonnegHomClass.apply_nonneg
AbsoluteValue.nonnegHomClass
AbsoluteValue.apply_natAbs_eq
Real.instIsOrderedRing
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
exists_pos_eq_pow_neg ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
Real.instOne
Real.instPow
Real.instNatCast
Real.instNeg
โ€”is_prime_of_minimal_nat_zero_lt_and_lt_one
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.logb_neg
Nat.cast_one
Real.instZeroLEOneClass
RCLike.charZero_rclike
Nat.Prime.one_lt
neg_neg
Real.rpow_logb
Nat.cast_zero
Nat.Prime.pos
Nat.Prime.ne_one
is_prime_of_minimal_nat_zero_lt_and_lt_one ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
Real.instOne
Nat.Primeโ€”Nat.irreducible_iff_nat_prime
Nat.isUnit_iff
Nat.cast_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
Real.instIsDomain
Rat.nontrivial
mul_ne_zero_iff
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
lt_self_iff_false
map_zero
AbsoluteValue.zeroHomClass
Nat.cast_zero
lt_mul_of_one_lt_right
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
lt_mul_of_one_lt_left
IsStrictOrderedRing.toMulPosStrictMono
le_of_not_gt
Function.mt
LT.lt.not_ge
map_pos_of_ne_zero
Real.instIsOrderedAddMonoid
MulRingNormClass.toAddGroupNormClass
AbsoluteValue.instMulRingNormClassOfNontrivialOfIsDomain
Real.instIsOrderedRing
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Rat.instCharZero
LT.lt.false
LE.le.trans_lt
one_le_mul_of_one_le_of_one_le
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
map_mul
AbsoluteValue.mulHomClass
Nat.cast_mul
le_pow_log ๐Ÿ“–mathematicalReal
Real.instLE
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
Real.instOne
Real.instPow
Real.logb
Real.instNatCast
โ€”one_mul
Filter.Tendsto.mul_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
le_of_tendsto_of_tendsto
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_const_nhds
Filter.eventually_atTop
ne_zero_of_lt
not_real_equiv_padic ๐Ÿ“–mathematicalโ€”AbsoluteValue.IsEquiv
Rat.semiring
Real
Real.semiring
Real.partialOrder
real
padic
โ€”not_real_isEquiv_padic
not_real_isEquiv_padic ๐Ÿ“–mathematicalโ€”AbsoluteValue.IsEquiv
Rat.semiring
Real
Real.semiring
Real.partialOrder
real
padic
โ€”AbsoluteValue.isEquiv_iff_exists_rpow_eq
LT.lt.ne'
Nat.instAtLeastTwoHAddOfNat
LE.le.trans_lt
padic_le_one
Real.one_lt_rpow
one_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
real_eq_abs
Nat.abs_ofNat
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.cast_ofNat
one_lt_of_not_bounded ๐Ÿ“–mathematicalReal
Real.instLE
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
Real.instOne
Real.instLTโ€”Mathlib.Tactic.Contrapose.contraposeโ‚‚
apply_le_sum_digits
List.sum_le_sum
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LE.le.trans
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Real.instZeroLEOneClass
RCLike.charZero_rclike
le_refl
pow_nonneg
IsOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
NonnegHomClass.apply_nonneg
AbsoluteValue.nonnegHomClass
mul_le_of_le_one_right
le_of_lt
Nat.cast_pos'
NeZero.charZero_one
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
pow_le_oneโ‚€
List.sum_replicate
nsmul_eq_mul
mul_comm
Nat.digits_len
ne_zero_of_lt
Nat.cast_add_one
mul_le_mul_of_nonneg_left
add_le_add_left
Real.natLog_le_logb
eq_or_ne
CharP.cast_eq_zero
CharP.ofCharZero
Rat.instCharZero
AbsoluteValue.map_zero
Real.logb_nonneg
Nat.one_lt_cast
Nat.cast_one
Ne.bot_lt
Nat.cast_pow
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
AbsoluteValue.monoidWithZeroHomClass
Real.instIsDomain
Rat.nontrivial
Real.rpow_natCast
Real.rpow_rpow_inv
ne_of_gt
Real.rpow_le_rpow
one_le_powโ‚€
Nat.instZeroLEOneClass
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.logb_pow
mul_pos
Right.add_pos_of_nonneg_of_pos
mul_nonneg
Real.instNontrivial
add_le_add_right
Nat.one_le_cast
Real.mul_rpow
mul_assoc
add_mul
Distrib.rightDistribClass
one_mul
AbsoluteValue.map_one
le_of_tendsto_of_tendsto
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Filter.atTop_neBot
instIsDirectedOrder
instArchimedeanNat
tendsto_const_nhds
mul_one
Real.logb_pos
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
add_pos'
Filter.eventually_atTop
padic_eq_padicNorm ๐Ÿ“–mathematicalโ€”DFunLike.coe
AbsoluteValue
Real
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
padic
Real.instRatCast
padicNorm
โ€”โ€”
padic_le_one ๐Ÿ“–mathematicalโ€”Real
Real.instLE
DFunLike.coe
AbsoluteValue
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
padic
Real.instOne
โ€”Nat.cast_one
Real.instIsStrictOrderedRing
padicNorm.of_int
real_eq_abs ๐Ÿ“–mathematicalโ€”DFunLike.coe
AbsoluteValue
Real
Rat.semiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
real
Real.instRatCast
abs
Rat.instLattice
Rat.addGroup
โ€”Rat.cast_abs
Real.instIsStrictOrderedRing

---

โ† Back to Index