Documentation Verification Report

Complex

πŸ“ Source: Mathlib/NumberTheory/Padics/Complex.lean

Statistics

MetricCount
DefinitionsPadicAlgCl, instCoePadic, instRankOneNNRealV, normedField, valued, PadicComplex, instAlgebraPadic, instNormedField, instRankOneNNRealV, valued, PadicComplexInt, Β«termβ„‚_[_]Β», Β«termπ“ž_β„‚_[_]Β»
13
Theoremscoe_eq, instIsUltrametricDist, instUniformContinuousConstSMulPadic, isAlgebraic, isNonarchimedean, norm_extends, spectralNorm_eq, valuation_coe, valuation_def, valuation_p, coe_eq, coe_natCast, coe_zero, instIsScalarTowerPadicPadicAlgCl, isNonarchimedean, nnnorm_extends, norm_def, norm_extends, rankOne_hom_eq, valuation_extends, valuation_p, integers
22
Total35

PadicAlgCl

Definitions

NameCategoryTheorems
instCoePadic πŸ“–CompOp
1 mathmath: coe_eq
instRankOneNNRealV πŸ“–CompOp
1 mathmath: PadicComplex.rankOne_hom_eq
normedField πŸ“–CompOp
20 mathmath: PadicComplex.valuation_extends, PadicComplex.coe_eq, PadicComplex.norm_def, PadicComplex.coe_natCast, isNonarchimedean, norm_extends, instUniformContinuousConstSMulPadic, valuation_p, PadicComplex.valuation_p, spectralNorm_eq, PadicComplex.isNonarchimedean, PadicComplex.instIsScalarTowerPadicPadicAlgCl, valuation_def, valuation_coe, PadicComplex.coe_zero, PadicComplex.norm_extends, PadicComplex.rankOne_hom_eq, instIsUltrametricDist, PadicComplex.nnnorm_extends, PadicComplexInt.integers
valued πŸ“–CompOp
16 mathmath: PadicComplex.valuation_extends, PadicComplex.coe_eq, PadicComplex.norm_def, PadicComplex.coe_natCast, instUniformContinuousConstSMulPadic, valuation_p, PadicComplex.valuation_p, PadicComplex.isNonarchimedean, PadicComplex.instIsScalarTowerPadicPadicAlgCl, valuation_def, valuation_coe, PadicComplex.coe_zero, PadicComplex.norm_extends, PadicComplex.rankOne_hom_eq, PadicComplex.nnnorm_extends, PadicComplexInt.integers

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eq πŸ“–mathematicalβ€”Padic
PadicAlgCl
instCoePadic
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Padic.field
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgebraicClosure.instField
RingHom.instFunLike
algebraMap
AlgebraicClosure.instAlgebra
Algebra.id
β€”β€”
instIsUltrametricDist πŸ“–mathematicalβ€”IsUltrametricDist
PadicAlgCl
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
normedField
β€”IsUltrametricDist.isUltrametricDist_of_forall_norm_add_le_max_norm
isNonarchimedean
instUniformContinuousConstSMulPadic πŸ“–mathematicalβ€”UniformContinuousConstSMul
Padic
PadicAlgCl
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
valued
AlgebraicClosure.instSMulOfIsScalarTower
Padic.field
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Padic.normedField
IsScalarTower.right
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
β€”uniformContinuousConstSMul_of_continuousConstSMul
Valued.toIsUniformAddGroup
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing
isAlgebraic πŸ“–mathematicalβ€”Algebra.IsAlgebraic
Padic
PadicAlgCl
Padic.instCommRing
DivisionRing.toRing
Field.toDivisionRing
AlgebraicClosure.instField
Padic.field
AlgebraicClosure.instAlgebra
CommRing.toCommSemiring
Algebra.id
β€”AlgebraicClosure.isAlgebraic
isNonarchimedean πŸ“–mathematicalβ€”IsNonarchimedean
Real
Real.linearOrder
PadicAlgCl
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
normedField
Norm.norm
NormedField.toNorm
β€”isNonarchimedean_spectralNorm
Padic.instIsUltrametricDist
AlgebraicClosure.isAlgebraic
norm_extends πŸ“–mathematicalβ€”Norm.norm
PadicAlgCl
NormedField.toNorm
normedField
DFunLike.coe
RingHom
Padic
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Padic.field
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgebraicClosure.instField
RingHom.instFunLike
algebraMap
AlgebraicClosure.instAlgebra
Algebra.id
Padic.instNorm
β€”spectralAlgNorm_extends
Padic.instIsUltrametricDist
AlgebraicClosure.isAlgebraic
spectralNorm_eq πŸ“–mathematicalβ€”spectralNorm
Padic
Padic.normedField
PadicAlgCl
AlgebraicClosure.instField
Padic.field
AlgebraicClosure.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Algebra.id
Norm.norm
NormedField.toNorm
normedField
β€”β€”
valuation_coe πŸ“–mathematicalβ€”NNReal.toReal
DFunLike.coe
Valuation
PadicAlgCl
NNReal
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
NNReal.instLinearOrderedCommGroupWithZero
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
normedField
Valuation.instFunLike
Valued.v
valued
Norm.norm
NormedField.toNorm
β€”β€”
valuation_def πŸ“–mathematicalβ€”DFunLike.coe
Valuation
PadicAlgCl
NNReal
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
NNReal.instLinearOrderedCommGroupWithZero
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
normedField
Valuation.instFunLike
Valued.v
valued
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
β€”β€”
valuation_p πŸ“–mathematicalβ€”DFunLike.coe
Valuation
PadicAlgCl
NNReal
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
NNReal.instLinearOrderedCommGroupWithZero
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
normedField
Valuation.instFunLike
Valued.v
valued
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NNReal.instDiv
instOneNNReal
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”map_natCast
RingHom.instRingHomClass
NNReal.eq
valuation_coe
norm_extends
Padic.norm_p
one_div
NNReal.coe_inv
NNReal.coe_natCast

PadicComplex

Definitions

NameCategoryTheorems
instAlgebraPadic πŸ“–CompOpβ€”
instNormedField πŸ“–CompOp
4 mathmath: norm_def, isNonarchimedean, norm_extends, nnnorm_extends
instRankOneNNRealV πŸ“–CompOp
2 mathmath: norm_def, rankOne_hom_eq
valued πŸ“–CompOp
5 mathmath: valuation_extends, norm_def, valuation_p, rankOne_hom_eq, PadicComplexInt.integers

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eq πŸ“–mathematicalβ€”UniformSpace.Completion.coe'
PadicAlgCl
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
DFunLike.coe
RingHom
PadicComplex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
AlgebraicClosure.instField
Padic
Padic.field
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
UniformSpace.Completion.instField
Valued.isTopologicalDivisionRing
Field.toDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingHom.instFunLike
algebraMap
UniformSpace.Completion.algebra'
AlgebraicClosure.instCommRing
β€”β€”
coe_natCast πŸ“–mathematicalβ€”UniformSpace.Completion.coe'
PadicAlgCl
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
PadicComplex
UniformSpace.Completion.ring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
UniformSpace.toTopologicalSpace
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
β€”IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Valued.completable
map_natCast
RingHom.instRingHomClass
coe_eq
coe_zero πŸ“–mathematicalβ€”UniformSpace.Completion.coe'
PadicAlgCl
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
UniformSpace.Completion
instZeroCompletion
β€”β€”
instIsScalarTowerPadicPadicAlgCl πŸ“–mathematicalβ€”IsScalarTower
Padic
PadicAlgCl
PadicComplex
AlgebraicClosure.instSMulOfIsScalarTower
Padic.field
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Padic.normedField
IsScalarTower.right
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
UniformSpace.Completion.instSMul
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
PadicAlgCl.normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
Algebra.toSMul
AlgebraicClosure.instField
β€”IsScalarTower.of_algebraMap_eq
Valued.toIsUniformAddGroup
Valued.isTopologicalDivisionRing
isNonarchimedean πŸ“–mathematicalβ€”IsNonarchimedean
Real
Real.linearOrder
PadicComplex
instAddCompletion
PadicAlgCl
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Norm.norm
NormedField.toNorm
instNormedField
β€”UniformSpace.Completion.induction_onβ‚‚
isClosed_le
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Continuous.comp
continuous_norm
continuous_add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
UniformSpace.Completion.topologicalRing
Continuous.sup
TopologicalLattice.toContinuousSup
HasSolidNorm.toTopologicalLattice
Continuous.norm
Continuous.fst
continuous_id'
Continuous.snd
UniformSpace.Completion.coe_add
Valued.toIsUniformAddGroup
norm_extends
PadicAlgCl.isNonarchimedean
nnnorm_extends πŸ“–mathematicalβ€”NNNorm.nnnorm
UniformSpace.Completion
PadicAlgCl
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
instNormedField
UniformSpace.Completion.coe'
β€”NNReal.eq
norm_extends
norm_def πŸ“–mathematicalβ€”Norm.norm
PadicComplex
NormedField.toNorm
instNormedField
Valued.norm
UniformSpace.Completion.instField
PadicAlgCl
AlgebraicClosure.instField
Padic
Padic.field
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
Valued.isTopologicalDivisionRing
Field.toDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
valued
instRankOneNNRealV
β€”β€”
norm_extends πŸ“–mathematicalβ€”Norm.norm
UniformSpace.Completion
PadicAlgCl
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
NormedField.toNorm
instNormedField
UniformSpace.Completion.coe'
β€”Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
norm_def
Valued.norm.eq_1
coe_nnnorm
IsTopologicalDivisionRing.toIsTopologicalRing
valuation_extends
rankOne_hom_eq πŸ“–mathematicalβ€”Valuation.RankOne.hom
PadicComplex
UniformSpace.Completion.ring
PadicAlgCl
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
Valued.toUniformSpace
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
UniformSpace.toTopologicalSpace
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Valued.v
valued
instRankOneNNRealV
PadicAlgCl.instRankOneNNRealV
β€”IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
valuation_extends πŸ“–mathematicalβ€”DFunLike.coe
Valuation
UniformSpace.Completion
PadicAlgCl
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
NNReal
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
UniformSpace.Completion.ring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
UniformSpace.toTopologicalSpace
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Valuation.instFunLike
Valued.v
valued
UniformSpace.Completion.coe'
β€”Valued.extension_extends
valuation_p πŸ“–mathematicalβ€”DFunLike.coe
Valuation
PadicComplex
NNReal
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
NNReal.instLinearOrderedCommGroupWithZero
UniformSpace.Completion.ring
PadicAlgCl
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
Valued.toUniformSpace
PadicAlgCl.valued
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
UniformSpace.toTopologicalSpace
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Valuation.instFunLike
Valued.v
valued
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NNReal.instDiv
instOneNNReal
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Valued.completable
map_natCast
RingHom.instRingHomClass
coe_eq
valuation_extends
PadicAlgCl.valuation_p

PadicComplexInt

Theorems

NameKindAssumesProvesValidatesDepends On
integers πŸ“–mathematicalβ€”Valuation.Integers
PadicComplex
NNReal
UniformSpace.Completion.commRing
PadicAlgCl
AlgebraicClosure.instCommRing
Padic
Padic.field
Valued.toUniformSpace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
PadicAlgCl.normedField
NNReal.instLinearOrderedCommGroupWithZero
PadicAlgCl.valued
Valued.toIsUniformAddGroup
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
UniformSpace.toTopologicalSpace
Valued.isTopologicalDivisionRing
Valued.v
UniformSpace.Completion.ring
PadicComplex.valued
ValuationSubring
UniformSpace.Completion.instField
AlgebraicClosure.instField
Field.toDivisionRing
Valued.completable
SetLike.instMembership
ValuationSubring.instSetLike
PadicComplexInt
ValuationSubring.instCommRingSubtypeMem
ValuationSubring.instAlgebraSubtypeMem
β€”Valuation.integer.integers
Valued.toIsUniformAddGroup
IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing

(root)

Definitions

NameCategoryTheorems
PadicAlgCl πŸ“–CompOp
22 mathmath: PadicComplex.valuation_extends, PadicComplex.coe_eq, PadicComplex.norm_def, PadicComplex.coe_natCast, PadicAlgCl.isNonarchimedean, PadicAlgCl.norm_extends, PadicAlgCl.instUniformContinuousConstSMulPadic, PadicAlgCl.valuation_p, PadicComplex.valuation_p, PadicAlgCl.spectralNorm_eq, PadicComplex.isNonarchimedean, PadicAlgCl.isAlgebraic, PadicComplex.instIsScalarTowerPadicPadicAlgCl, PadicAlgCl.valuation_def, PadicAlgCl.valuation_coe, PadicComplex.coe_zero, PadicComplex.norm_extends, PadicComplex.rankOne_hom_eq, PadicAlgCl.coe_eq, PadicAlgCl.instIsUltrametricDist, PadicComplex.nnnorm_extends, PadicComplexInt.integers
PadicComplex πŸ“–CompOp
8 mathmath: PadicComplex.coe_eq, PadicComplex.norm_def, PadicComplex.coe_natCast, PadicComplex.valuation_p, PadicComplex.isNonarchimedean, PadicComplex.instIsScalarTowerPadicPadicAlgCl, PadicComplex.rankOne_hom_eq, PadicComplexInt.integers
PadicComplexInt πŸ“–CompOp
1 mathmath: PadicComplexInt.integers
Β«termβ„‚_[_]Β» πŸ“–CompOpβ€”
Β«termπ“ž_β„‚_[_]Β» πŸ“–CompOpβ€”

---

← Back to Index