Documentation Verification Report

PadicNorm

πŸ“ Source: Mathlib/NumberTheory/Padics/PadicNorm.lean

Statistics

MetricCount
DefinitionspadicNorm
1
Theoremsadd_eq_max_of_ne, div, dvd_iff_norm_le, eq_zpow_of_nonzero, instIsAbsoluteValueRat, int_eq_one_iff, int_lt_one_iff, mul, nat_eq_one_iff, nat_lt_one_iff, neg, nonarchimedean, nonneg, nonzero, not_int_of_not_padic_int, of_int, of_nat, one, padicNorm_of_prime_of_ne, padicNorm_p, padicNorm_p_lt_one, padicNorm_p_lt_one_of_prime, padicNorm_p_of_prime, sub, sum_le, sum_le', sum_lt, sum_lt', triangle_ineq, values_discrete, zero, zero_of_padicNorm_eq_zero
32
Total33

(root)

Definitions

NameCategoryTheorems
padicNorm πŸ“–CompOp
54 mathmath: padicNorm.instIsAbsoluteValueRat, padicNorm.padicNorm_p_lt_one_of_prime, Padic.eq_padicNorm, PadicInt.isCauSeq_nthHom, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, padicNorm.int_eq_one_iff, PadicSeq.ne_zero_iff_nequiv_zero, padicNorm.padicNorm_p_of_prime, padicNorm.nonarchimedean, Padic.exi_rat_seq_conv_cauchy, padicNorm.mul, padicNormE.eq_padic_norm', Padic.zero_def, padicNorm.int_lt_one_iff, padicNorm.padicNorm_p, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, padicNormE.defn, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, padicNorm.nat_lt_one_iff, PadicSeq.norm_neg, padicNorm.sub, padicNorm.eq_zpow_of_nonzero, PadicSeq.norm_nonarchimedean, PadicSeq.not_equiv_zero_const_of_nonzero, padicNorm.triangle_ineq, padicNorm.div, Rat.AbsoluteValue.padic_eq_padicNorm, padicNorm.of_nat, PadicInt.coe_adicCompletionIntegersEquiv_apply, PadicInt.nthHomSeq_mul, padicNorm.one, Padic.mk_eq, padicNorm.values_discrete, padicNorm.dvd_iff_norm_le, padicNorm.nonneg, padicNorm.add_eq_max_of_ne, padicNorm.nat_eq_one_iff, PadicSeq.not_limZero_const_of_nonzero, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, padicNorm.padicNorm_p_lt_one, padicNorm.neg, padicNorm.of_int, PadicSeq.add_eq_max_of_ne, PadicInt.isCauSeq_padicNorm_of_pow_dvd_sub, PadicInt.nthHomSeq_add, PadicInt.nthHomSeq_one, PadicSeq.norm_const, PadicSeq.norm_one, padicNorm.zero, PadicSeq.norm_zero_iff, padicNorm.padicNorm_of_prime_of_ne, PadicSeq.norm_mul, Padic.const_equiv, PadicSeq.eq_zero_iff_equiv_zero

padicNorm

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_max_of_ne πŸ“–mathematicalβ€”padicNorm
Rat.instSup
β€”Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
nonarchimedean
neg
le_of_not_gt
not_lt_of_ge
max_eq_right_of_lt
max_eq_left
le_antisymm
max_eq_left_of_lt
add_comm
max_comm
Ne.lt_or_gt
div πŸ“–mathematicalβ€”padicNormβ€”div_zero
zero
eq_div_of_mul_eq
nonzero
mul
div_mul_cancelβ‚€
dvd_iff_norm_le πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
padicNorm
β€”Nat.cast_pow
Nat.cast_zero
Int.cast_zero
Rat.instCharZero
zpow_neg
zpow_natCast
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Rat.instZeroLEOneClass
Rat.instPosMulMono
IsStrictOrderedRing.toIsOrderedRing
zpow_le_zpow_iff_rightβ‚€
Nat.cast_one
Rat.instAddLeftMono
Nat.Prime.one_lt
Fact.out
neg_le_neg_iff
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
padicValRat.of_int
padicValInt.of_ne_one_ne_zero
Nat.Prime.ne_one
Int.instZeroLEOneClass
Int.instCharZero
FiniteMultiplicity.pow_dvd_iff_le_multiplicity
Int.finiteMultiplicity_iff
eq_zpow_of_nonzero πŸ“–mathematicalβ€”padicNorm
padicValRat
β€”zpow_neg
instIsAbsoluteValueRat πŸ“–mathematicalβ€”IsAbsoluteValue
Rat.semiring
Rat.instPartialOrder
padicNorm
β€”nonneg
zero_of_padicNorm_eq_zero
zero
triangle_ineq
mul
int_eq_one_iff πŸ“–mathematicalβ€”padicNormβ€”pow_one
Nat.cast_one
zpow_neg
zpow_one
inv_lt_oneβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Nat.cast_zero
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
Nat.Prime.pos
Fact.out
Nat.Prime.one_lt
inv_lt_zero
Rat.instPosMulMono
Nat.cast_lt
zpow_neg_one
zpow_lt_zpow_iff_rightβ‚€
padicValRat.of_int
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
zpow_zero
zpow_right_injβ‚€
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Rat.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Int.instIsOrderedAddMonoid
int_lt_one_iff πŸ“–mathematicalβ€”padicNormβ€”not_iff_not
int_eq_one_iff
eq_iff_le_not_lt
mul πŸ“–mathematicalβ€”padicNormβ€”MulZeroClass.zero_mul
zero
MulZeroClass.mul_zero
Rat.instCharZero
Nat.Prime.ne_zero
Fact.out
IsDomain.to_noZeroDivisors
Rat.isDomain
padicValRat.mul
neg_add_rev
zpow_addβ‚€
zpow_neg
mul_comm
nat_eq_one_iff πŸ“–mathematicalβ€”padicNormβ€”int_eq_one_iff
Int.cast_natCast
nat_lt_one_iff πŸ“–mathematicalβ€”padicNormβ€”int_lt_one_iff
Int.cast_natCast
neg πŸ“–mathematicalβ€”padicNormβ€”neg_zero
zero
padicValRat.neg
zpow_neg
nonarchimedean πŸ“–mathematicalβ€”padicNorm
Rat.instSup
β€”add_comm
max_comm
le_of_not_ge
nonneg πŸ“–mathematicalβ€”padicNormβ€”zpow_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Rat.instZeroLEOneClass
Nat.cast_zero
Rat.instAddLeftMono
Rat.instCharZero
nonzero πŸ“–β€”β€”β€”β€”eq_zpow_of_nonzero
zpow_ne_zero
Nat.cast_zero
Rat.instCharZero
ne_of_gt
Nat.Prime.pos
Fact.out
not_int_of_not_padic_int πŸ“–β€”padicNormβ€”β€”Mathlib.Tactic.Contrapose.contrapose₃
Rat.eq_num_of_isInt
of_int
of_int πŸ“–mathematicalβ€”padicNormβ€”eq_or_ne
Int.cast_zero
zero
Rat.instZeroLEOneClass
eq_1
Nat.cast_zero
Rat.instCharZero
zpow_le_one_of_nonposβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Nat.cast_one
Rat.instAddLeftMono
Nat.Prime.one_le
Fact.out
padicValRat.of_int
Int.instAddLeftMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
of_nat πŸ“–mathematicalβ€”padicNormβ€”of_int
one πŸ“–mathematicalβ€”padicNormβ€”NeZero.charZero_one
Rat.instCharZero
padicValRat.one
neg_zero
zpow_zero
padicNorm_of_prime_of_ne πŸ“–mathematicalβ€”padicNormβ€”Nat.cast_zero
Int.instCharZero
padicValNat_primes
eq_1
Rat.instCharZero
Nat.Prime.ne_zero
Fact.out
neg_zero
zpow_zero
padicNorm_p πŸ“–mathematicalβ€”padicNormβ€”Rat.instCharZero
LT.lt.ne'
pos_of_gt
Nat.instCanonicallyOrderedAdd
padicValRat.of_nat
padicValNat.self
Nat.cast_one
zpow_neg
zpow_one
padicNorm_p_lt_one πŸ“–mathematicalβ€”padicNormβ€”padicNorm_p
inv_lt_one_iffβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Rat.instZeroLEOneClass
Nat.cast_zero
Nat.cast_one
Rat.instAddLeftMono
Rat.instCharZero
padicNorm_p_lt_one_of_prime πŸ“–mathematicalβ€”padicNormβ€”padicNorm_p_lt_one
Nat.Prime.one_lt
Fact.out
padicNorm_p_of_prime πŸ“–mathematicalβ€”padicNormβ€”padicNorm_p
Nat.Prime.one_lt
Fact.out
sub πŸ“–mathematicalβ€”padicNorm
Rat.instSup
β€”sub_eq_add_neg
neg
nonarchimedean
sum_le πŸ“–mathematicalFinset.Nonempty
padicNorm
Finset.sum
Rat.addCommMonoid
β€”Finset.induction_on
Finset.sum_insert
LE.le.trans
nonarchimedean
max_le
Finset.mem_insert_self
Finset.mem_insert_of_mem
Finset.sum_congr
Finset.instLawfulSingleton
Finset.sum_singleton
sum_le' πŸ“–mathematicalpadicNormFinset.sum
Rat.addCommMonoid
β€”Finset.eq_empty_or_nonempty
zero
sum_le
sum_lt πŸ“–mathematicalFinset.Nonempty
padicNorm
Finset.sum
Rat.addCommMonoid
β€”Finset.induction_on
Finset.sum_insert
lt_of_le_of_lt
nonarchimedean
max_lt
Finset.mem_insert_self
Finset.mem_insert_of_mem
Finset.sum_congr
Finset.instLawfulSingleton
Finset.sum_singleton
sum_lt' πŸ“–mathematicalpadicNormFinset.sum
Rat.addCommMonoid
β€”Finset.eq_empty_or_nonempty
zero
sum_lt
triangle_ineq πŸ“–mathematicalβ€”padicNormβ€”nonarchimedean
max_le_add_of_nonneg
Rat.instAddLeftMono
covariant_swap_add_of_covariant_add
nonneg
values_discrete πŸ“–mathematicalβ€”padicNormβ€”zpow_neg
zero πŸ“–mathematicalβ€”padicNormβ€”β€”
zero_of_padicNorm_eq_zero πŸ“–β€”padicNormβ€”β€”by_contradiction
zpow_ne_zero
Nat.cast_zero
Rat.instCharZero
Nat.Prime.ne_zero
Fact.out

---

← Back to Index