Documentation Verification Report

PadicNumbers

πŸ“ Source: Mathlib/NumberTheory/Padics/PadicNumbers.lean

Statistics

MetricCount
DefinitionspadicValuation, addValuation, addValuationDef, instAdd, instAddCommGroup, instCommRing, instDist, instDiv, instInhabited, instMul, instNeg, instNontriviallyNormedField, instNorm, instOne, instRing, instSub, instZero, limSeq, metricSpace, mk, mulValuation, normedField, ratNorm, valuation, PadicSeq, norm, stationaryPoint, valuation, padicValuation, padicNormE, Β«termβ„š_[_]Β»
31
TheoremspadicValuation_eq_one_iff, padicValuation_eq_zero_iff, padicValuation_le_one, padicValuation_lt_one_iff, padicValuation_self, map_add, map_mul, map_one, map_zero, apply, add_eq_max_of_ne, coe_add, coe_div, coe_inj, coe_mul, coe_neg, coe_one, coe_sub, coe_zero, comap_mulValuation_eq_int_padicValuation, comap_mulValuation_eq_padicValuation, complete, complete', complete'', const_equiv, denseRange_ratCast, eq_of_norm_add_lt_left, eq_of_norm_add_lt_right, eq_padicNorm, eq_ratNorm, exi_rat_seq_conv, exi_rat_seq_conv_cauchy, instCharZero, instCompleteSpace, instIsUltrametricDist, isAbsoluteValue, le_valuation_add, mk_eq, mulValuation_toFun, nonarchimedean, norm_eq_of_norm_add_lt_left, norm_eq_of_norm_add_lt_right, norm_eq_of_norm_sub_lt_left, norm_eq_of_norm_sub_lt_right, norm_eq_zpow_log_mulValuation, norm_eq_zpow_neg_valuation, norm_intCast_eq_one_iff, norm_intCast_lt_one_iff, norm_int_le_one, norm_int_le_pow_iff_dvd, norm_le_one_iff_val_nonneg, norm_le_pow_iff_norm_lt_pow_add_one, norm_lt_pow_iff_norm_le_pow_sub_one, norm_natCast_eq_one_iff, norm_natCast_lt_one_iff, norm_natCast_p_sub_one, norm_p, norm_p_lt_one, norm_p_pow, norm_p_zpow, norm_rat_le_one, image, is_norm, is_rat, mul, padicNormE_lim_le, rat_dense, rat_dense', valuation_intCast, valuation_inv, valuation_mul, valuation_natCast, valuation_ofNat, valuation_one, valuation_p, valuation_pow, valuation_ratCast, valuation_zero, valuation_zpow, zero_def, add_eq_max_of_ne, eq_zero_iff_equiv_zero, equiv_zero_of_val_eq_of_equiv_zero, lift_index_left, lift_index_left_left, lift_index_right, ne_zero_iff_nequiv_zero, norm_const, norm_eq, norm_eq_norm_app_of_nonzero, norm_eq_of_add_equiv_zero, norm_eq_zpow_neg_valuation, norm_equiv, norm_mul, norm_neg, norm_nonarchimedean, norm_nonneg, norm_nonzero_of_not_equiv_zero, norm_one, norm_values_discrete, norm_zero_iff, not_equiv_zero_const_of_nonzero, not_limZero_const_of_nonzero, stationary, stationaryPoint_spec, val_eq_iff_norm_eq, padicValuation_cast, padicValuation_eq_zero_iff, padicValuation_le_one_iff, padicValuation_self, surjective_padicValuation, add_eq_max_of_ne', defn, eq_padic_norm', image', nonarchimedean'
116
Total147

Int

Definitions

NameCategoryTheorems
padicValuation πŸ“–CompOp
7 mathmath: Rat.padicValuation_cast, padicValuation_lt_one_iff, padicValuation_eq_one_iff, padicValuation_self, Padic.comap_mulValuation_eq_int_padicValuation, padicValuation_le_one, padicValuation_eq_zero_iff

Theorems

NameKindAssumesProvesValidatesDepends On
padicValuation_eq_one_iff πŸ“–mathematicalβ€”DFunLike.coe
Valuation
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
instAddCommMonoid
Multiplicative.linearOrder
instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instSemiring
instIsStrictOrderedRing
instRing
Valuation.instFunLike
padicValuation
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instIsStrictOrderedRing
padicValRat.of_int
NeZero.one
WithZero.instNontrivial
WithZero.exp_zero
WithZero.exp_injective
Nat.Prime.ne_one
Fact.out
padicValuation_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
Valuation
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
instAddCommMonoid
Multiplicative.linearOrder
instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instSemiring
instIsStrictOrderedRing
instRing
Valuation.instFunLike
padicValuation
WithZero.instZero
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instIsStrictOrderedRing
WithZero.instNontrivial
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
Rat.instCharZero
padicValuation_le_one πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
DFunLike.coe
Valuation
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
instAddCommMonoid
Multiplicative.linearOrder
instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instSemiring
instIsStrictOrderedRing
instRing
Valuation.instFunLike
padicValuation
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instIsStrictOrderedRing
padicValRat.of_int
WithZero.le_log_iff_exp_le
NeZero.one
WithZero.instNontrivial
instAddLeftMono
IsStrictOrderedRing.toIsOrderedRing
padicValuation_lt_one_iff πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLT
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
DFunLike.coe
Valuation
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
instAddCommMonoid
Multiplicative.linearOrder
instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instSemiring
instIsStrictOrderedRing
instRing
Valuation.instFunLike
padicValuation
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instNormedCommRing
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instIsStrictOrderedRing
padicValuation_self πŸ“–mathematicalβ€”DFunLike.coe
Valuation
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
instAddCommMonoid
Multiplicative.linearOrder
instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instSemiring
instIsStrictOrderedRing
instRing
Valuation.instFunLike
padicValuation
WithZero.exp
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
instIsStrictOrderedRing
cast_natCast
Rat.padicValuation_self

Padic

Definitions

NameCategoryTheorems
addValuation πŸ“–CompOp
1 mathmath: addValuation.apply
addValuationDef πŸ“–CompOp
4 mathmath: AddValuation.map_one, AddValuation.map_add, AddValuation.map_zero, AddValuation.map_mul
instAdd πŸ“–CompOp
11 mathmath: padicNormE.nonarchimedean', padicNormE.add_eq_max_of_ne', AddValuation.map_add, le_valuation_add, toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, nonarchimedean, coe_withValRingEquiv, coe_withValRingEquiv_symm, coe_add, add_eq_max_of_ne, PadicInt.coe_add
instAddCommGroup πŸ“–CompOpβ€”
instCommRing πŸ“–CompOp
5 mathmath: instCompatibleWithZeroMultiplicativeIntMulValuation, PadicAlgCl.isAlgebraic, instIsRankLeOne, instIsNontrivial, comap_mulValuation_eq_int_padicValuation
instDist πŸ“–CompOp
1 mathmath: instIsUltrametricDist
instDiv πŸ“–CompOp
1 mathmath: coe_div
instInhabited πŸ“–CompOpβ€”
instMul πŸ“–CompOp
10 mathmath: coe_mul, valuation_mul, toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, padicNormE.mul, coe_withValRingEquiv, AddValuation.map_mul, coe_withValRingEquiv_symm, PadicInt.coe_mul, PadicInt.unitCoeff_coe, PadicInt.coe_dpow_eq
instNeg πŸ“–CompOp
2 mathmath: coe_neg, PadicInt.coe_neg
instNontriviallyNormedField πŸ“–CompOpβ€”
instNorm πŸ“–CompOp
58 mathmath: eq_ratNorm, PadicInt.coe_sub, PadicInt.norm_intCast_eq_padic_norm, PadicInt.mem_subring_iff, PadicInt.coe_zero, norm_intCast_eq_one_iff, eq_padicNorm, withValUniformEquiv_norm_le_one_iff, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, PadicInt.coe_eq_zero, PadicInt.padic_norm_e_of_padicInt, PadicInt.coe_sum, norm_int_le_one, PadicInt.algebraMap_apply, norm_eq_zpow_log_mulValuation, PadicAlgCl.norm_extends, PadicInt.mk_coe, norm_natCast_lt_one_iff, norm_p_pow, norm_p_lt_one, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, PadicInt.coe_one, norm_eq_zpow_neg_valuation, PadicInt.coe_natCast, padicNormE.is_rat, PadicInt.valuation_coe_nonneg, padicNormE.is_norm, PadicInt.coe_adicCompletionIntegersEquiv_apply, norm_natCast_eq_one_iff, isAbsoluteValue, norm_le_one_iff_val_nonneg, norm_intCast_lt_one_iff, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, nonarchimedean, padicNormE.mul, PadicInt.valuation_coe, norm_rat_le_one, rat_dense, PadicInt.coe_neg, norm_rat_le_one_iff_padicValuation_le_one, PadicInt.norm_def, PadicInt.isOpenEmbedding_coe, norm_le_pow_iff_norm_lt_pow_add_one, add_eq_max_of_ne, norm_p, norm_natCast_p_sub_one, PadicInt.coe_mul, complete, PadicInt.coe_add, norm_lt_pow_iff_norm_le_pow_sub_one, PadicInt.unitCoeff_coe, PadicInt.coe_dpow_eq, PadicInt.coe_intCast, padicNormE.image, padicNorm_two_harmonic, norm_int_le_pow_iff_dvd, norm_p_zpow, PadicInt.coe_pow
instOne πŸ“–CompOp
4 mathmath: AddValuation.map_one, PadicInt.coe_one, valuation_one, coe_one
instRing πŸ“–CompOp
32 mathmath: PadicInt.norm_intCast_eq_padic_norm, PadicInt.mem_subring_iff, norm_intCast_eq_one_iff, complete', norm_int_le_one, addValuation.apply, instCharZero, norm_eq_zpow_log_mulValuation, valuation_p, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, norm_natCast_lt_one_iff, norm_p_pow, norm_p_lt_one, mulValuation_toFun, PadicInt.Coe.ringHom_apply, PadicInt.coe_natCast, norm_natCast_eq_one_iff, valuation_p_lt_one, complete'', exi_rat_seq_conv, valuation_intCast, norm_intCast_lt_one_iff, comap_mulValuation_eq_int_padicValuation, valuation_natCast, norm_p, norm_natCast_p_sub_one, complete, PadicInt.unitCoeff_coe, PadicInt.coe_dpow_eq, PadicInt.coe_intCast, norm_int_le_pow_iff_dvd, norm_p_zpow
instSub πŸ“–CompOp
8 mathmath: PadicInt.coe_sub, complete', coe_sub, padicNormE.defn, complete'', exi_rat_seq_conv, rat_dense, rat_dense'
instZero πŸ“–CompOp
8 mathmath: PadicInt.coe_zero, PadicInt.coe_eq_zero, coe_zero, zero_def, valuation_zero, mulValuation_toFun, AddValuation.map_zero, PadicInt.coe_dpow_eq
limSeq πŸ“–CompOp
2 mathmath: exi_rat_seq_conv_cauchy, exi_rat_seq_conv
metricSpace πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
mulValuation πŸ“–CompOp
5 mathmath: instCompatibleWithZeroMultiplicativeIntMulValuation, norm_eq_zpow_log_mulValuation, mulValuation_toFun, comap_mulValuation_eq_padicValuation, comap_mulValuation_eq_int_padicValuation
normedField πŸ“–CompOp
30 mathmath: eq_padicNorm, withValUniformEquiv_norm_le_one_iff, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, PadicInt.coe_sum, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, instCompleteSpace, comap_mulValuation_eq_padicValuation, PadicAlgCl.instUniformContinuousConstSMulPadic, PadicAlgCl.spectralNorm_eq, PadicInt.coe_adicCompletionIntegersEquiv_apply, valuation_zpow, PadicComplex.instIsScalarTowerPadicPadicAlgCl, toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, denseRange_ratCast, valuation_ratCast, withValUniformEquiv_cast_apply, coe_withValRingEquiv, isUniformInducing_cast_withVal, norm_rat_le_one, rat_dense, coe_withValRingEquiv_symm, norm_rat_le_one_iff_padicValuation_le_one, PadicInt.isOpenEmbedding_coe, instProperSpace, PadicInt.unitCoeff_coe, padicNorm_two_harmonic, norm_p_zpow, isDenseInducing_cast_withVal
ratNorm πŸ“–CompOp
1 mathmath: eq_ratNorm
valuation πŸ“–CompOp
18 mathmath: addValuation.apply, valuation_p, valuation_zero, mulValuation_toFun, norm_eq_zpow_neg_valuation, valuation_mul, PadicInt.valuation_coe_nonneg, valuation_one, valuation_ofNat, valuation_zpow, le_valuation_add, valuation_intCast, norm_le_one_iff_val_nonneg, valuation_pow, PadicInt.valuation_coe, valuation_ratCast, valuation_natCast, valuation_inv

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_max_of_ne πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
instAdd
Real
Real.instMax
β€”IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
padicNormE.add_eq_max_of_ne'
coe_add πŸ“–mathematicalβ€”Padic
DivisionRing.toRatCast
Field.toDivisionRing
field
instAdd
β€”Rat.cast_add
instCharZero
coe_div πŸ“–mathematicalβ€”Padic
DivisionRing.toRatCast
Field.toDivisionRing
field
instDiv
β€”Rat.cast_div
instCharZero
coe_inj πŸ“–mathematicalβ€”Padic
DivisionRing.toRatCast
Field.toDivisionRing
field
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
const_equiv
Quotient.eq'
coe_mul πŸ“–mathematicalβ€”Padic
DivisionRing.toRatCast
Field.toDivisionRing
field
instMul
β€”Rat.cast_mul
instCharZero
coe_neg πŸ“–mathematicalβ€”Padic
DivisionRing.toRatCast
Field.toDivisionRing
field
instNeg
β€”Rat.cast_neg
coe_one πŸ“–mathematicalβ€”Padic
DivisionRing.toRatCast
Field.toDivisionRing
field
instOne
β€”β€”
coe_sub πŸ“–mathematicalβ€”Padic
DivisionRing.toRatCast
Field.toDivisionRing
field
instSub
β€”Rat.cast_sub
instCharZero
coe_zero πŸ“–mathematicalβ€”Padic
DivisionRing.toRatCast
Field.toDivisionRing
field
instZero
β€”β€”
comap_mulValuation_eq_int_padicValuation πŸ“–mathematicalβ€”Valuation.comap
Padic
WithZero
Multiplicative
instRing
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
Int.instRing
Int.castRingHom
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
instCommRing
mulValuation
Int.padicValuation
β€”Valuation.ext
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
eq_intCast
RingHom.instRingHomClass
instCharZero
valuation_intCast
map_intCast
comap_mulValuation_eq_padicValuation πŸ“–mathematicalβ€”Valuation.comap
Padic
WithZero
Multiplicative
DivisionRing.toRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
normedField
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Rat.castHom
instCharZero
mulValuation
Rat.padicValuation
β€”Valuation.ext
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
instCharZero
eq_ratCast
RingHom.instRingHomClass
valuation_ratCast
complete πŸ“–mathematicalβ€”CauSeq.IsComplete
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Padic
instRing
Norm.norm
instNorm
isAbsoluteValue
β€”Real.instIsStrictOrderedRing
isAbsoluteValue
Rat.instIsStrictOrderedRing
CauSeq.isCauSeq
Nat.cast_zero
complete''
exists_rat_btwn
Real.instArchimedean
lt_trans
complete' πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
instSub
IsCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
instRing
β€”Rat.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
exi_rat_seq_conv
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
padicNormE.defn
sub_add_sub_cancel
LE.le.trans_lt
AbsoluteValue.add_le
add_halves
CharZero.NeZero.two
Rat.instCharZero
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Rat.instAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
le_of_max_le_right
AbsoluteValue.map_sub
IsStrictOrderedRing.toIsOrderedRing
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
le_of_max_le_left
complete'' πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
instSub
IsCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
instRing
β€”Rat.instIsStrictOrderedRing
complete'
AbsoluteValue.map_sub
IsStrictOrderedRing.toIsOrderedRing
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
const_equiv πŸ“–mathematicalβ€”CauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
CauSeq.equiv
padicNorm.instIsAbsoluteValueRat
CauSeq.const
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
eq_of_sub_eq_zero
CauSeq.const_limZero
denseRange_ratCast πŸ“–mathematicalβ€”DenseRange
Padic
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
normedField
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
β€”Metric.mem_closure_range_iff
rat_dense
eq_of_norm_add_lt_left πŸ“–β€”Real
Real.instLT
Norm.norm
Padic
instNorm
instAdd
β€”β€”norm_eq_of_norm_add_lt_left
eq_of_norm_add_lt_right πŸ“–β€”Real
Real.instLT
Norm.norm
Padic
instNorm
instAdd
β€”β€”norm_eq_of_norm_add_lt_right
eq_padicNorm πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
normedField
Real
Real.instRatCast
padicNorm
β€”padicNormE.eq_padic_norm'
eq_ratNorm πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
Real
Real.instRatCast
ratNorm
β€”padicNormE.is_rat
exi_rat_seq_conv πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
instSub
IsCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
instRing
DivisionRing.toRatCast
Field.toDivisionRing
limSeq
β€”Rat.instIsStrictOrderedRing
rat_dense'
lt_of_lt_of_le
div_le_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_zero
Nat.cast_one
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
right_distrib
Distrib.rightDistribClass
le_add_of_le_of_nonneg
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_trans
le_of_lt
one_mul
exists_nat_gt
instArchimedeanRat
exi_rat_seq_conv_cauchy πŸ“–mathematicalβ€”IsCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
limSeq
β€”Rat.instIsStrictOrderedRing
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toIsOrderedRing
Rat.nontrivial
exi_rat_seq_conv
CauSeq.cauchyβ‚‚
AbsoluteValue.isAbsoluteValue
lt_of_le_of_lt
AbsoluteValue.add_le
add_thirds
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Rat.instAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
AbsoluteValue.map_sub
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
le_of_max_le_left
le_of_max_le_right
le_max_right
sub_add_sub_cancel
le_max_left
padicNormE.eq_padic_norm'
instCharZero
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_neg
instCharZero πŸ“–mathematicalβ€”CharZero
Padic
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
β€”Rat.cast_natCast
Rat.instCharZero
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
Padic
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
normedField
β€”Metric.complete_of_cauchySeq_tendsto
Real.instIsStrictOrderedRing
Metric.cauchySeq_iff'
isAbsoluteValue
complete
Metric.mem_nhds_iff
CauSeq.equiv_lim
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
instIsUltrametricDist πŸ“–mathematicalβ€”IsUltrametricDist
Padic
instDist
β€”Real.instIsStrictOrderedRing
sub_add_sub_cancel
padicNormE.nonarchimedean'
isAbsoluteValue πŸ“–mathematicalβ€”IsAbsoluteValue
Real
Real.semiring
Real.partialOrder
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
Norm.norm
instNorm
β€”norm_nonneg
norm_eq_zero
norm_add_le
map_mul
AbsoluteValue.mulHomClass
Rat.cast_mul
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
le_valuation_add πŸ“–mathematicalβ€”valuation
Padic
instAdd
β€”zero_add
min_le_right
add_zero
min_le_left
nonarchimedean
norm_eq_zpow_neg_valuation
zpow_le_zpow_iff_rightβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.one_lt
Fact.out
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
mk_eq πŸ“–mathematicalβ€”PadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
β€”Quotient.eq'
Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
mulValuation_toFun πŸ“–mathematicalβ€”DFunLike.coe
Valuation
Padic
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
instRing
Valuation.instFunLike
mulValuation
instZero
WithZero.instZero
WithZero.exp
valuation
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
nonarchimedean πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Padic
instNorm
instAdd
Real.instMax
β€”Real.instIsStrictOrderedRing
padicNormE.nonarchimedean'
norm_eq_of_norm_add_lt_left πŸ“–β€”Real
Real.instLT
Norm.norm
Padic
instNorm
instAdd
β€”β€”by_contradiction
not_lt_of_ge
add_eq_max_of_ne
le_max_left
norm_eq_of_norm_add_lt_right πŸ“–β€”Real
Real.instLT
Norm.norm
Padic
instNorm
instAdd
β€”β€”by_contradiction
not_lt_of_ge
add_eq_max_of_ne
le_max_right
norm_eq_of_norm_sub_lt_left πŸ“–β€”Real
Real.instLT
Norm.norm
Padic
instNorm
instSub
β€”β€”norm_eq_of_norm_sub_lt_right
norm_neg
neg_sub
norm_eq_of_norm_sub_lt_right πŸ“–β€”Real
Real.instLT
Norm.norm
Padic
instNorm
instSub
β€”β€”norm_neg
norm_eq_of_norm_add_lt_right
norm_eq_zpow_log_mulValuation πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
Real
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
WithZero.log
Int.instAddMonoid
DFunLike.coe
Valuation
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
instRing
Valuation.instFunLike
mulValuation
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
norm_eq_zpow_neg_valuation
zpow_neg
WithZero.log_inv
norm_eq_zpow_neg_valuation πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
Real
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
valuation
β€”Quotient.inductionOn'
Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
PadicSeq.norm_eq_zpow_neg_valuation
CauSeq.not_limZero_of_not_congr_zero
Mathlib.Tactic.Contrapose.contraposeβ‚„
sub_zero
Rat.cast_zpow
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Rat.cast_natCast
norm_intCast_eq_one_iff πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
instRing
Real
Real.instOne
IsCoprime
Int.instCommSemiring
β€”not_iff_not
Nat.Prime.dvd_iff_not_coprime
Fact.out
norm_natAbs
norm_intCast_lt_one_iff πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
Padic
instNorm
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
instRing
Real.instOne
β€”Mathlib.Tactic.Contrapose.contrapose₁
le_of_eq
Rat.cast_intCast
eq_padicNorm
Nat.cast_one
Rat.cast_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
padicNorm.int_eq_one_iff
Int.cast_mul
Int.cast_natCast
padicNormE.mul
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
le_rfl
norm_int_le_one
norm_nonneg
mul_one
norm_p
inv_lt_one_of_one_ltβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.Prime.one_lt
Fact.out
norm_int_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Padic
instNorm
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
instRing
Real.instOne
β€”norm_rat_le_one
Nat.Prime.ne_one
Fact.out
Rat.cast_intCast
norm_int_le_pow_iff_dvd πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Padic
instNorm
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
instRing
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
Monoid.toNatPow
Int.instMonoid
β€”zpow_neg
zpow_natCast
Rat.cast_natCast
Rat.cast_intCast
instCharZero
Rat.instCharZero
eq_padicNorm
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
padicNorm.dvd_iff_norm_le
norm_le_one_iff_val_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Padic
instNorm
Real.instOne
valuation
β€”norm_zero
Real.instZeroLEOneClass
valuation_zero
norm_eq_zpow_neg_valuation
zpow_zero
zpow_le_zpow_iff_rightβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.one_lt_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Fact.out
Nat.Prime.one_lt'
neg_nonpos
Int.instAddLeftMono
norm_le_pow_iff_norm_lt_pow_add_one πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Padic
instNorm
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
Real.instLT
β€”zpow_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.pos
Fact.out
norm_zero
le_of_lt
norm_eq_zpow_neg_valuation
Nat.cast_one
Nat.Prime.one_lt
zpow_right_strictMonoβ‚€
StrictMono.le_iff_le
StrictMono.lt_iff_lt
norm_lt_pow_iff_norm_le_pow_sub_one πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
Padic
instNorm
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
Real.instLE
β€”norm_le_pow_iff_norm_lt_pow_add_one
sub_add_cancel
norm_natCast_eq_one_iff πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
Real
Real.instOne
β€”Int.cast_natCast
norm_intCast_eq_one_iff
norm_natCast_lt_one_iff πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
Padic
instNorm
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
Real.instOne
β€”Int.cast_natCast
norm_intCast_lt_one_iff
norm_natCast_p_sub_one πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
Real
Real.instOne
β€”norm_natCast_eq_one_iff
Nat.coprime_self_sub_right
Nat.Prime.one_le
Fact.out
norm_p πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
Real
Real.instInv
Real.instNatCast
β€”Rat.cast_natCast
padicNormE.eq_padic_norm'
Rat.instCharZero
Nat.Prime.ne_zero
Fact.out
padicValNat_self
Nat.cast_one
padicValNat.one
Nat.cast_zero
sub_zero
zpow_neg
zpow_one
Rat.cast_inv
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
norm_p_lt_one πŸ“–mathematicalβ€”Real
Real.instLT
Norm.norm
Padic
instNorm
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
Real.instOne
β€”norm_p
inv_lt_one_of_one_ltβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.one_lt
Fact.out
norm_p_pow πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
Real
DivInvMonoid.toZPow
Real.instDivInvMonoid
Real.instNatCast
β€”norm_p_zpow
zpow_natCast
norm_p_zpow πŸ“–mathematicalβ€”Norm.norm
Padic
instNorm
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
normedField
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
Real
Real.instDivInvMonoid
Real.instNatCast
β€”norm_zpow
norm_p
zpow_neg
inv_zpow
norm_rat_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Padic
instNorm
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
normedField
Real.instOne
β€”Rat.zero_iff_num_zero
Rat.cast_zero
norm_zero
Real.instZeroLEOneClass
eq_padicNorm
Nat.cast_one
Real.instIsStrictOrderedRing
padicNorm.eq_zpow_of_nonzero
padicValRat.eq_1
neg_sub
padicValNat.eq_zero_of_not_dvd
Nat.cast_zero
zero_sub
zpow_neg
zpow_natCast
inv_le_one_of_one_leβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Rat.instZeroLEOneClass
Rat.instAddLeftMono
Rat.instCharZero
Nat.Prime.pos
Fact.out
padicNormE_lim_le πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
Padic
instNorm
IsCauSeq
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
instRing
CauSeq.lim
isAbsoluteValue
complete
β€”Real.instIsStrictOrderedRing
isAbsoluteValue
complete
CauSeq.equiv_lim
sub_add_cancel
nonarchimedean
max_le
le_of_lt
le_rfl
rat_dense πŸ“–mathematicalReal
Real.instLT
Real.instZero
Norm.norm
Padic
instNorm
instSub
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
normedField
β€”exists_rat_btwn
Real.instIsStrictOrderedRing
Real.instArchimedean
rat_dense'
lt_trans
rat_dense' πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
instSub
DivisionRing.toRatCast
Field.toDivisionRing
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
CauSeq.cauchyβ‚‚
PadicSeq.norm_equiv
PadicSeq.stationaryPoint_spec
le_rfl
sub_self
padicNorm.zero
LT.lt.le
lt_of_not_ge
valuation_intCast πŸ“–mathematicalβ€”valuation
Padic
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
instRing
padicValInt
β€”Rat.cast_intCast
valuation_ratCast
padicValRat.of_int
valuation_inv πŸ“–mathematicalβ€”valuation
Padic
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
field
β€”eq_or_ne
inv_zero
valuation_zero
neg_zero
norm_inv
Nat.cast_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Nat.Prime.ne_one
Fact.out
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.pos
Nat.instCanonicallyOrderedAdd
NeZero.of_gt'
Nat.Prime.one_lt'
zpow_right_injβ‚€
IsStrictOrderedRing.toPosMulStrictMono
zpow_neg
norm_eq_zpow_neg_valuation
inv_ne_zero
valuation_mul πŸ“–mathematicalβ€”valuation
Padic
instMul
β€”norm_mul
NormedDivisionRing.toNormMulClass
Nat.cast_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Nat.Prime.ne_one
Fact.out
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.pos
Nat.instCanonicallyOrderedAdd
NeZero.of_gt'
Nat.Prime.one_lt'
neg_add
zpow_right_injβ‚€
IsStrictOrderedRing.toPosMulStrictMono
zpow_addβ‚€
LT.lt.ne'
norm_eq_zpow_neg_valuation
mul_ne_zero
NormMulClass.toNoZeroDivisors
valuation_natCast πŸ“–mathematicalβ€”valuation
Padic
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
padicValNat
β€”Rat.cast_natCast
valuation_ratCast
padicValRat.of_nat
valuation_ofNat πŸ“–mathematicalβ€”valuation
padicValNat
β€”valuation_natCast
valuation_one πŸ“–mathematicalβ€”valuation
Padic
instOne
β€”Nat.cast_one
valuation_natCast
padicValNat.one
Nat.cast_zero
valuation_p πŸ“–mathematicalβ€”valuation
Padic
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
β€”valuation_natCast
padicValNat_self
Nat.cast_one
valuation_pow πŸ“–mathematicalβ€”valuation
Padic
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
β€”pow_zero
valuation_one
Nat.cast_zero
MulZeroClass.zero_mul
eq_or_ne
zero_pow
valuation_zero
Nat.cast_add
Nat.cast_one
MulZeroClass.mul_zero
pow_succ
valuation_mul
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
add_one_mul
Distrib.rightDistribClass
valuation_ratCast πŸ“–mathematicalβ€”valuation
Padic
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
normedField
padicValRat
β€”eq_or_ne
Rat.cast_zero
valuation_zero
padicValRat.zero
neg_injective
StrictMono.injective
zpow_right_strictMonoβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toCharZero
Nat.Prime.one_lt
Fact.out
norm_eq_zpow_neg_valuation
Nat.cast_zero
instCharZero
eq_padicNorm
Rat.cast_natCast
Rat.cast_zpow
padicNorm.eq_zpow_of_nonzero
valuation_zero πŸ“–mathematicalβ€”valuation
Padic
instZero
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
const_equiv
valuation_zpow πŸ“–mathematicalβ€”valuation
Padic
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
normedField
β€”zpow_natCast
valuation_pow
zpow_negSucc
valuation_inv
Nat.cast_add
Nat.cast_one
neg_add_rev
IsCancelMulZero.toIsRightCancelMulZero
Int.instIsCancelMulZero
zero_def πŸ“–mathematicalβ€”Padic
instZero
CauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
CauSeq.equiv
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
β€”β€”

Padic.AddValuation

Theorems

NameKindAssumesProvesValidatesDepends On
map_add πŸ“–mathematicalβ€”WithTop
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
SemilatticeInf.toMin
WithTop.semilatticeInf
Lattice.toSemilatticeInf
instLatticeInt
Padic.addValuationDef
Padic
Padic.instAdd
β€”le_top
min_eq_right
zero_add
le_refl
min_eq_left
add_zero
WithTop.coe_min
WithTop.coe_le_coe
Padic.le_valuation_add
map_mul πŸ“–mathematicalβ€”Padic.addValuationDef
Padic
Padic.instMul
WithTop
WithTop.add
β€”MulZeroClass.zero_mul
WithTop.top_add
MulZeroClass.mul_zero
WithTop.add_top
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
WithTop.coe_add
WithTop.coe_eq_coe
Padic.valuation_mul
map_one πŸ“–mathematicalβ€”Padic.addValuationDef
Padic
Padic.instOne
WithTop
WithTop.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
β€”Padic.addValuationDef.eq_1
one_ne_zero
NeZero.charZero_one
Padic.instCharZero
Padic.valuation_one
WithTop.coe_zero
map_zero πŸ“–mathematicalβ€”Padic.addValuationDef
Padic
Padic.instZero
Top.top
WithTop
WithTop.top
β€”Padic.addValuationDef.eq_1

Padic.addValuation

Theorems

NameKindAssumesProvesValidatesDepends On
apply πŸ“–mathematicalβ€”DFunLike.coe
AddValuation
Padic
Padic.instRing
WithTop
WithTop.linearOrderedAddCommMonoidWithTop
AddCommGroup.toAddCancelCommMonoid
Int.instAddCommGroup
Int.instLinearOrder
Int.instIsOrderedAddMonoid
AddValuation.instFunLike
Padic.addValuation
WithTop.some
Padic.valuation
β€”Int.instIsOrderedAddMonoid

Padic.padicNormE

Theorems

NameKindAssumesProvesValidatesDepends On
image πŸ“–mathematicalβ€”Norm.norm
Padic
Padic.instNorm
Real
Real.instRatCast
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
PadicSeq.ne_zero_iff_nequiv_zero
PadicSeq.norm_values_discrete
is_norm πŸ“–mathematicalβ€”Real
Real.instRatCast
DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Padic.field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
Norm.norm
Padic.instNorm
β€”β€”
is_rat πŸ“–mathematicalβ€”Norm.norm
Padic
Padic.instNorm
Real
Real.instRatCast
β€”norm_zero
Rat.cast_zero
image
mul πŸ“–mathematicalβ€”Norm.norm
Padic
Padic.instNorm
Padic.instMul
Real
Real.instMul
β€”map_mul
AbsoluteValue.mulHomClass
Rat.cast_mul
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing

PadicSeq

Definitions

NameCategoryTheorems
norm πŸ“–CompOp
15 mathmath: norm_values_discrete, norm_nonneg, norm_neg, norm_nonarchimedean, norm_eq, norm_eq_of_add_equiv_zero, norm_eq_zpow_neg_valuation, norm_eq_norm_app_of_nonzero, add_eq_max_of_ne, val_eq_iff_norm_eq, norm_const, norm_one, norm_zero_iff, norm_mul, norm_equiv
stationaryPoint πŸ“–CompOp
3 mathmath: lift_index_left_left, lift_index_right, lift_index_left
valuation πŸ“–CompOp
2 mathmath: norm_eq_zpow_neg_valuation, val_eq_iff_norm_eq

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_max_of_ne πŸ“–mathematicalβ€”norm
PadicSeq
CauSeq.instAdd
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
Rat.instSup
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
norm_eq_of_add_equiv_zero
add_sub_cancel_right
sub_zero
norm_equiv
norm_zero_iff
max_eq_right
norm_nonneg
add_sub_cancel_left
max_eq_left
lift_index_left_left
lift_index_left
lift_index_right
padicNorm.add_eq_max_of_ne
eq_zero_iff_equiv_zero πŸ“–mathematicalβ€”Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.Completion.Cauchy
CauSeq.Completion.instZeroCauchy
PadicSeq
CauSeq.equiv
CauSeq.instZero
β€”CauSeq.Completion.mk_eq
Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
equiv_zero_of_val_eq_of_equiv_zero πŸ“–β€”padicNorm
IsCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
PadicSeq
CauSeq.equiv
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
β€”β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
sub_zero
lift_index_left πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
IsCauSeq
stationaryPoint
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
stationaryPoint_spec
le_trans
le_max_left
le_max_right
le_rfl
lift_index_left_left πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
IsCauSeq
stationaryPoint
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
stationaryPoint_spec
le_max_left
le_rfl
lift_index_right πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
IsCauSeq
stationaryPoint
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
stationaryPoint_spec
le_trans
le_max_right
le_rfl
ne_zero_iff_nequiv_zero πŸ“–mathematicalβ€”PadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
β€”Iff.not
Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
eq_zero_iff_equiv_zero
norm_const πŸ“–mathematicalβ€”norm
CauSeq.const
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
eq_or_ne
padicNorm.zero
not_equiv_zero_const_of_nonzero
norm_eq πŸ“–mathematicalpadicNorm
IsCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
normβ€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
equiv_zero_of_val_eq_of_equiv_zero
stationaryPoint_spec
le_max_left
le_rfl
le_max_right
norm_eq_norm_app_of_nonzero πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
normβ€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
norm_nonzero_of_not_equiv_zero
padicNorm.zero
norm_eq_of_add_equiv_zero πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instAdd
CauSeq.instZero
normβ€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
sub_neg_eq_add
sub_zero
norm_equiv
norm_neg
norm_eq_zpow_neg_valuation πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
norm
valuation
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
norm.eq_1
valuation.eq_1
padicNorm.eq_1
CauSeq.not_limZero_of_not_congr_zero
stationaryPoint_spec
le_rfl
padicNorm.zero
norm_equiv πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
normβ€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
norm_mul πŸ“–mathematicalβ€”norm
PadicSeq
CauSeq.instMul
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
CauSeq.mul_equiv_zero'
MulZeroClass.zero_mul
CauSeq.mul_equiv_zero
MulZeroClass.mul_zero
CauSeq.mul_not_equiv_zero
lift_index_left_left
lift_index_left
lift_index_right
padicNorm.mul
norm_neg πŸ“–mathematicalβ€”norm
PadicSeq
CauSeq.instNeg
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
β€”norm_eq
Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
padicNorm.neg
norm_nonarchimedean πŸ“–mathematicalβ€”norm
PadicSeq
CauSeq.instAdd
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
Rat.instSup
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
le_max_of_le_left
norm_nonneg
add_sub_cancel_right
sub_zero
norm_equiv
norm_zero_iff
max_eq_right
le_refl
add_sub_cancel_left
max_eq_left
norm_nonneg πŸ“–mathematicalβ€”normβ€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
norm_nonzero_of_not_equiv_zero πŸ“–β€”PadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
β€”β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
norm_zero_iff
norm_one πŸ“–mathematicalβ€”norm
PadicSeq
CauSeq.instOne
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
CauSeq.one_not_equiv_zero
Rat.isDomain
padicNorm.eq_zpow_of_nonzero
NeZero.charZero_one
Rat.instCharZero
padicValRat.one
neg_zero
zpow_zero
norm_values_discrete πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
normβ€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
norm_eq_norm_app_of_nonzero
zpow_neg
padicNorm.values_discrete
norm_zero_iff πŸ“–mathematicalβ€”norm
PadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
stationaryPoint_spec
le_rfl
sub_zero
not_equiv_zero_const_of_nonzero πŸ“–mathematicalβ€”CauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
CauSeq.equiv
padicNorm.instIsAbsoluteValueRat
CauSeq.const
CauSeq.instZero
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
not_limZero_const_of_nonzero
sub_zero
not_limZero_const_of_nonzero πŸ“–mathematicalβ€”CauSeq.LimZero
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
CauSeq.const
padicNorm.instIsAbsoluteValueRat
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
CauSeq.const_limZero
stationary πŸ“–mathematicalCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
CauSeq.equiv
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
IsCauSeqβ€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
CauSeq.abv_pos_of_not_limZero
CauSeq.not_limZero_of_not_congr_zero
CauSeq.cauchyβ‚‚
max_le_iff
lt_of_lt_of_le
lt_max_iff
padicNorm.add_eq_max_of_ne
padicNorm.neg
lt_irrefl
add_comm
sub_eq_add_neg
max_comm
stationaryPoint_spec πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
stationaryPoint
IsCauSeqβ€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
stationary
val_eq_iff_norm_eq πŸ“–mathematicalPadicSeq
CauSeq.equiv
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
padicNorm.instIsAbsoluteValueRat
CauSeq.instZero
valuation
norm
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
norm_eq_zpow_neg_valuation
zpow_right_injβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Rat.instZeroLEOneClass
Nat.cast_zero
Rat.instAddLeftMono
Rat.instCharZero
Nat.Prime.pos
Fact.out
Nat.cast_one
Nat.Prime.ne_one

Rat

Definitions

NameCategoryTheorems
padicValuation πŸ“–CompOp
15 mathmath: Padic.withValUniformEquiv_norm_le_one_iff, padicValuation_cast, padicValuation_self, Padic.comap_mulValuation_eq_padicValuation, Padic.toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, padicValuation_eq_zero_iff, Padic.withValUniformEquiv_cast_apply, Padic.coe_withValRingEquiv, Padic.isUniformInducing_cast_withVal, Padic.coe_withValRingEquiv_symm, HeightOneSpectrum.valuation_equiv_padicValuation, Padic.norm_rat_le_one_iff_padicValuation_le_one, surjective_padicValuation, Padic.isDenseInducing_cast_withVal, padicValuation_le_one_iff

Theorems

NameKindAssumesProvesValidatesDepends On
padicValuation_cast πŸ“–mathematicalβ€”DFunLike.coe
Valuation
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
instNormedField
Valuation.instFunLike
padicValuation
Int.instRing
Int.padicValuation
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
padicValuation_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
Valuation
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
instNormedField
Valuation.instFunLike
padicValuation
WithZero.instZero
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
WithZero.instNontrivial
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
padicValuation_le_one_iff πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
DFunLike.coe
Valuation
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
instNormedField
Valuation.instFunLike
padicValuation
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
num_div_den
map_divβ‚€
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
Int.padicValuation_eq_one_iff
padicValuation_cast
Int.cast_natCast
div_le_oneβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
LinearOrderedCommMonoidWithZero.toMulPosStrictMono
LE.le.eq_or_lt
Int.padicValuation_le_one
LT.lt.ne
Nat.Prime.one_lt
Fact.out
Int.padicValuation_lt_one_iff
Int.natCast_dvd
padicValuation_self πŸ“–mathematicalβ€”DFunLike.coe
Valuation
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
instNormedField
Valuation.instFunLike
padicValuation
WithZero.exp
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
instCharZero
Nat.Prime.ne_zero
Fact.out
padicValRat.of_nat
padicValNat_self
Nat.cast_one
surjective_padicValuation πŸ“–mathematicalβ€”WithZero
Multiplicative
DFunLike.coe
Valuation
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
instNormedField
Valuation.instFunLike
padicValuation
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
WithZero.instNontrivial
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
le_or_gt
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
nontrivial
instCharZero
Nat.Prime.ne_zero
Fact.out
padicValRat.self_pow_inv
Nat.cast_natAbs
Int.cast_abs
inv_inv
EquivLike.toEmbeddingLike
Int.instIsOrderedAddMonoid
padicValRat.pow
abs_eq_neg_self
LT.lt.le
Int.cast_neg
padicValRat.of_nat
padicValNat_self
Nat.cast_one
mul_one

(root)

Definitions

NameCategoryTheorems
PadicSeq πŸ“–CompOp
12 mathmath: PadicSeq.ne_zero_iff_nequiv_zero, PadicSeq.norm_neg, PadicSeq.norm_nonarchimedean, PadicInt.nthHomSeq_mul, Padic.mk_eq, PadicSeq.add_eq_max_of_ne, PadicInt.nthHomSeq_add, PadicInt.nthHomSeq_one, PadicSeq.norm_one, PadicSeq.norm_zero_iff, PadicSeq.norm_mul, PadicSeq.eq_zero_iff_equiv_zero
padicNormE πŸ“–CompOp
10 mathmath: Padic.complete', padicNormE.nonarchimedean', padicNormE.image', padicNormE.eq_padic_norm', padicNormE.defn, padicNormE.add_eq_max_of_ne', Padic.padicNormE.is_norm, Padic.complete'', Padic.exi_rat_seq_conv, Padic.rat_dense'
Β«termβ„š_[_]Β» πŸ“–CompOpβ€”

padicNormE

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_max_of_ne' πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Padic.field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
Padic.instAdd
Rat.instSup
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
PadicSeq.add_eq_max_of_ne
defn πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Padic.field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
Padic.instSub
DivisionRing.toRatCast
Field.toDivisionRing
IsCauSeq
Rat.instField
Rat.linearOrder
Rat.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
padicNorm
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
CauSeq.cauchyβ‚‚
Mathlib.Tactic.Push.not_forall_eq
not_lt_of_ge
PadicSeq.norm.eq_1
not_le_of_gt
le_total
PadicSeq.stationaryPoint_spec
le_rfl
PadicSeq.norm_equiv
eq_padic_norm' πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Padic.field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
DivisionRing.toRatCast
Field.toDivisionRing
padicNorm
β€”PadicSeq.norm_const
image' πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Padic.field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
PadicSeq.ne_zero_iff_nequiv_zero
PadicSeq.norm_values_discrete
nonarchimedean' πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Padic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Padic.field
Rat.semiring
Rat.instPartialOrder
AbsoluteValue.funLike
padicNormE
Padic.instAdd
Rat.instSup
β€”Rat.instIsStrictOrderedRing
padicNorm.instIsAbsoluteValueRat
PadicSeq.norm_nonarchimedean

---

← Back to Index