Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/Padics/PadicVal/Basic.lean

Statistics

MetricCount
DefinitionspadicValInt, padicValRat
2
Theoremslog_ne_padicValNat_succ, max_log_padicValNat_succ_eq_log_succ, dvd_iff_padicValNat_ne_zero, dvd_of_one_le_padicValNat, nat_log_eq_padicValNat_iff, one_le_padicValNat_of_dvd, eq_zero_iff, eq_zero_of_not_dvd, mul, of_nat, of_ne_one_ne_zero, one, self, zero, padicValInt_dvd, padicValInt_dvd_iff, padicValInt_mul_eq_succ, padicValInt_self, div, div', div_of_dvd, div_pow, eq_zero_of_not_dvd, maxPowDiv_eq_emultiplicity, maxPowDiv_eq_multiplicity, mul, padicValNat_eq_maxPowDiv, pow, prime_pow, self, padicValNat_add_le_self, padicValNat_choose, padicValNat_choose', padicValNat_dvd_iff, padicValNat_dvd_iff_le, padicValNat_eq_zero_of_mem_Ioo, padicValNat_factorial, padicValNat_factorial_le, padicValNat_factorial_lt_of_ne_zero, padicValNat_factorial_mul, padicValNat_factorial_mul_add, padicValNat_le_nat_log, padicValNat_mul_div_factorial, padicValNat_mul_pow_left, padicValNat_mul_pow_right, padicValNat_prime_prime_pow, padicValNat_primes, padicValNat_self, add_eq_min, add_eq_of_lt, defn, div, finite_int_prime_iff, inv, le_padicValRat_add_of_le, lt_add_of_lt, lt_sum_of_lt, min_le_padicValRat_add, mul, multiplicity_sub_multiplicity, neg, of_int, of_int_multiplicity, of_nat, one, padicValRat_le_padicValRat_iff, pow, self, self_pow_inv, sum_pos_of_pos, zero, padicValRat_def, padicValRat_of_nat, pow_padicValNat_dvd, pow_succ_padicValNat_not_dvd, range_pow_padicValNat_subset_divisors, range_pow_padicValNat_subset_divisors', sub_one_mul_padicValNat_choose_eq_sub_sum_digits, sub_one_mul_padicValNat_choose_eq_sub_sum_digits', sub_one_mul_padicValNat_factorial, sub_one_mul_padicValNat_factorial_lt_of_ne_zero, zero_le_padicValRat_of_nat
82
Total84

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
log_ne_padicValNat_succ πŸ“–β€”β€”β€”β€”log_eq_iff
instCharZero
instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
mul_one
lt_of_le_of_ne'
pow_succ_padicValNat_not_dvd
fact_prime_two
dvd_of_eq
pow_padicValNat_dvd
max_log_padicValNat_succ_eq_log_succ πŸ“–mathematicalβ€”log
padicValNat
β€”le_antisymm
max_le
le_log_of_pow_le
Prime.one_lt
Fact.out
pow_log_le_add_one
padicValNat_le_nat_log
le_max_iff
not_le
lt_pow_of_log_lt
pow_log_le_self
padicValNat.prime_pow
le_refl

(root)

Definitions

NameCategoryTheorems
padicValInt πŸ“–CompOp
15 mathmath: padicValInt.eq_zero_of_not_dvd, padicValInt.zero, padicValInt.eq_zero_iff, padicValInt.one, padicValInt_dvd_iff, padicValInt_self, padicValInt_mul_eq_succ, padicValRat.of_int, Padic.valuation_intCast, padicValRat_def, padicValInt.self, padicValInt.mul, padicValInt.of_nat, padicValInt.of_ne_one_ne_zero, padicValInt_dvd
padicValRat πŸ“–CompOp
23 mathmath: padicValRat.padicValRat_le_padicValRat_iff, padicValRat.neg, padicValRat.zero, padicValRat.self_pow_inv, padicValRat.of_int_multiplicity, padicValRat.min_le_padicValRat_add, padicNorm.eq_zpow_of_nonzero, padicValRat_two_harmonic, padicValRat.one, padicValRat.of_int, padicValRat.multiplicity_sub_multiplicity, padicValRat_def, padicValRat.of_nat, Padic.valuation_ratCast, padicValRat.defn, padicValRat.add_eq_min, padicValRat_of_nat, padicValRat.inv, padicValRat.pow, padicValRat.div, padicValRat.mul, zero_le_padicValRat_of_nat, padicValRat.self

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_iff_padicValNat_ne_zero πŸ“–β€”β€”β€”β€”one_le_padicValNat_of_dvd
padicValNat.eq_zero_of_not_dvd
dvd_of_one_le_padicValNat πŸ“–β€”padicValNatβ€”β€”lt_irrefl
lt_of_lt_of_le
zero_lt_one
Nat.instZeroLEOneClass
padicValNat.eq_zero_of_not_dvd
nat_log_eq_padicValNat_iff πŸ“–mathematicalβ€”Nat.log
padicValNat
Monoid.toNatPow
Nat.instMonoid
β€”Nat.log_eq_iff
Fact.out
Nat.Prime.one_lt'
pow_padicValNat_dvd
one_le_padicValNat_of_dvd πŸ“–mathematicalβ€”padicValNatβ€”WithTop.coe_le_coe
ENat.some_eq_coe
padicValNat_eq_emultiplicity
pow_dvd_iff_le_emultiplicity
pow_one
padicValInt_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
Int.instMonoid
padicValInt
β€”padicValInt_dvd_iff
le_rfl
padicValInt_dvd_iff πŸ“–mathematicalβ€”Monoid.toNatPow
Int.instMonoid
padicValInt
β€”padicValInt.eq_1
padicValNat_dvd_iff
Int.natCast_dvd
padicValInt_mul_eq_succ πŸ“–mathematicalβ€”padicValIntβ€”padicValInt.mul
Nat.Prime.ne_zero
Fact.out
padicValInt.of_nat
padicValNat_self
padicValInt_self πŸ“–mathematicalβ€”padicValIntβ€”padicValInt.self
Nat.Prime.one_lt
Fact.out
padicValNat_add_le_self πŸ“–mathematicalβ€”padicValNatβ€”padicValNat_le_nat_log
Nat.log_lt_self
padicValNat.mul
padicValNat_self
Nat.Prime.two_le
Fact.out
padicValNat.eq_zero_of_not_dvd
padicValNat_choose πŸ“–mathematicalNat.logpadicValNat
Nat.choose
Finset.card
Finset.filter
Monoid.toNatPow
Nat.instMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”Nat.Prime.emultiplicity_choose
Fact.out
padicValNat_eq_emultiplicity
Nat.choose_ne_zero
padicValNat_choose' πŸ“–mathematicalNat.logpadicValNat
Nat.choose
Finset.card
Finset.filter
Monoid.toNatPow
Nat.instMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”Nat.Prime.emultiplicity_choose'
Fact.out
padicValNat_eq_emultiplicity
Nat.choose_ne_zero
padicValNat_dvd_iff πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
padicValNat
β€”eq_or_ne
dvd_zero
padicValNat_dvd_iff_le
padicValNat_dvd_iff_le πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
padicValNat
β€”pow_dvd_iff_le_emultiplicity
padicValNat_eq_emultiplicity
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
padicValNat_eq_zero_of_mem_Ioo πŸ“–mathematicalSet
Set.instMembership
Set.Ioo
Nat.instPreorder
padicValNatβ€”padicValNat.eq_zero_of_not_dvd
padicValNat_factorial πŸ“–mathematicalNat.logpadicValNat
Nat.factorial
Finset.sum
Nat.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
Monoid.toNatPow
Nat.instMonoid
β€”Nat.Prime.emultiplicity_factorial
Fact.out
padicValNat_eq_emultiplicity
Nat.factorial_ne_zero
padicValNat_factorial_le πŸ“–mathematicalβ€”padicValNat
Nat.factorial
β€”padicValNat.one
le_of_lt
padicValNat_factorial_lt_of_ne_zero
padicValNat_factorial_lt_of_ne_zero πŸ“–mathematicalβ€”padicValNat
Nat.factorial
β€”lt_of_le_of_lt
one_mul
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
Nat.Prime.one_lt
Fact.elim
sub_one_mul_padicValNat_factorial_lt_of_ne_zero
padicValNat_factorial_mul πŸ“–mathematicalβ€”padicValNat
Nat.factorial
β€”Nat.cast_injective
padicValNat_eq_emultiplicity
Nat.factorial_ne_zero
Nat.cast_add
Nat.Prime.emultiplicity_factorial_mul
Fact.out
padicValNat_factorial_mul_add πŸ“–mathematicalβ€”padicValNat
Nat.factorial
β€”add_zero
Nat.factorial_succ
padicValNat.mul
Nat.factorial_ne_zero
padicValNat_eq_zero_of_mem_Ioo
add_lt_add_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
zero_add
padicValNat_le_nat_log πŸ“–mathematicalβ€”padicValNat
Nat.log
β€”padicValNat.zero
Nat.log_zero_right
Nat.log_zero_left
Nat.instCanonicallyOrderedAdd
zero_add
Nat.log_one_left
Unique.instSubsingleton
Nat.le_log_of_pow_le
pow_padicValNat_dvd
padicValNat_mul_div_factorial πŸ“–mathematicalβ€”padicValNat
Nat.factorial
β€”padicValNat_factorial_mul_add
Nat.Prime.pos
Fact.out
padicValNat_mul_pow_left πŸ“–mathematicalβ€”padicValNat
Monoid.toNatPow
Nat.instMonoid
β€”padicValNat.mul
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
padicValNat.prime_pow
padicValNat_prime_prime_pow
add_zero
padicValNat_mul_pow_right πŸ“–mathematicalβ€”padicValNat
Monoid.toNatPow
Nat.instMonoid
β€”mul_comm
padicValNat_mul_pow_left
padicValNat_prime_prime_pow πŸ“–mathematicalβ€”padicValNat
Monoid.toNatPow
Nat.instMonoid
β€”padicValNat.pow
Nat.Prime.ne_zero
Fact.elim
padicValNat_primes
MulZeroClass.mul_zero
padicValNat_primes πŸ“–mathematicalβ€”padicValNatβ€”padicValNat.eq_zero_of_not_dvd
Nat.prime_dvd_prime_iff_eq
Fact.out
padicValNat_self πŸ“–mathematicalβ€”padicValNatβ€”padicValNat_def
Nat.Prime.ne_zero
Fact.out
multiplicity_self
Nat.instIsCancelMulZero
padicValRat_def πŸ“–mathematicalβ€”padicValRat
padicValInt
padicValNat
β€”β€”
padicValRat_of_nat πŸ“–mathematicalβ€”padicValNat
padicValRat
β€”padicValRat.of_nat
pow_padicValNat_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
padicValNat
β€”eq_or_ne
padicValNat.zero
pow_zero
Unique.instSubsingleton
one_pow
pow_dvd_of_le_multiplicity
padicValNat_def'
le_refl
pow_succ_padicValNat_not_dvd πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
padicValNat
β€”padicValNat_dvd_iff_le
not_le
range_pow_padicValNat_subset_divisors πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
Finset.image
Monoid.toNatPow
Nat.instMonoid
Finset.range
padicValNat
Nat.divisors
β€”Nat.mem_divisors
Dvd.dvd.trans
pow_dvd_pow
pow_padicValNat_dvd
range_pow_padicValNat_subset_divisors' πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
Finset.image
Monoid.toNatPow
Nat.instMonoid
Finset.range
padicValNat
Finset.erase
Nat.divisors
β€”eq_or_ne
padicValNat.zero
Nat.divisors_zero
Finset.erase_eq_of_notMem
Finset.instReflSubset
Finset.mem_erase
Nat.mem_divisors
LT.lt.ne'
Nat.Prime.one_lt
Fact.out
Dvd.dvd.trans
pow_dvd_pow
pow_padicValNat_dvd
sub_one_mul_padicValNat_choose_eq_sub_sum_digits πŸ“–mathematicalβ€”padicValNat
Nat.choose
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.digits
β€”sub_one_mul_padicValNat_choose_eq_sub_sum_digits'
sub_one_mul_padicValNat_choose_eq_sub_sum_digits' πŸ“–mathematicalβ€”padicValNat
Nat.choose
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.digits
β€”Nat.choose_eq_factorial_div_factorial
padicValNat.div_of_dvd
Nat.factorial_mul_factorial_dvd_factorial
padicValNat.mul
Nat.factorial_ne_zero
sub_one_mul_padicValNat_factorial
Nat.digit_sum_le
add_comm
tsub_tsub_assoc
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
zero_add
sub_one_mul_padicValNat_factorial πŸ“–mathematicalβ€”padicValNat
Nat.factorial
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.digits
β€”padicValNat_factorial
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
zero_add
Finset.sum_Ico_add'
Nat.instIsOrderedCancelAddMonoid
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.Ico_zero_eq_range
Nat.sub_one_mul_sum_log_div_pow_eq_sub_sum_digits
sub_one_mul_padicValNat_factorial_lt_of_ne_zero πŸ“–mathematicalβ€”padicValNat
Nat.factorial
β€”sub_one_mul_padicValNat_factorial
Nat.digits_ne_nil_iff_ne_zero
Nat.getLast_digit_ne_zero
Nat.digit_sum_le
zero_le_padicValRat_of_nat πŸ“–mathematicalβ€”padicValRatβ€”padicValRat.of_nat
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing

padicValInt

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_iff πŸ“–mathematicalβ€”padicValIntβ€”eq_1
padicValNat.eq_zero_iff
eq_zero_of_not_dvd πŸ“–mathematicalβ€”padicValIntβ€”β€”
mul πŸ“–mathematicalβ€”padicValIntβ€”padicValNat.mul
of_nat πŸ“–mathematicalβ€”padicValInt
padicValNat
β€”β€”
of_ne_one_ne_zero πŸ“–mathematicalβ€”padicValInt
multiplicity
Int.instMonoid
β€”eq_1
padicValNat_def'
Int.multiplicity_natAbs
one πŸ“–mathematicalβ€”padicValIntβ€”Int.natAbs_of_isUnit
padicValNat.one
self πŸ“–mathematicalβ€”padicValIntβ€”of_nat
padicValNat.self
zero πŸ“–mathematicalβ€”padicValIntβ€”padicValNat.zero

padicValNat

Theorems

NameKindAssumesProvesValidatesDepends On
div πŸ“–mathematicalβ€”padicValNatβ€”div_of_dvd
padicValNat_self
div' πŸ“–mathematicalβ€”padicValNatβ€”div_of_dvd
eq_zero_of_not_dvd
Nat.Prime.coprime_iff_not_dvd
Fact.out
div_of_dvd πŸ“–mathematicalβ€”padicValNatβ€”eq_or_ne
zero
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
mul_ne_zero_iff
IsDomain.to_noZeroDivisors
Nat.instIsDomain
mul_comm
Ne.bot_lt
mul
div_pow πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
padicValNatβ€”div_of_dvd
prime_pow
eq_zero_of_not_dvd πŸ“–mathematicalβ€”padicValNatβ€”eq_zero_iff
maxPowDiv_eq_emultiplicity πŸ“–mathematicalβ€”ENat
ENat.instNatCast
Nat.maxPowDiv
emultiplicity
Nat.instMonoid
β€”emultiplicity_eq_of_dvd_of_not_dvd
Nat.maxPowDiv.pow_dvd
Nat.maxPowDiv.le_of_dvd
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
maxPowDiv_eq_multiplicity πŸ“–mathematicalFiniteMultiplicity
Nat.instMonoid
Nat.maxPowDiv
multiplicity
β€”maxPowDiv_eq_emultiplicity
FiniteMultiplicity.emultiplicity_eq_multiplicity
mul πŸ“–mathematicalβ€”padicValNatβ€”Nat.cast_zero
Rat.instCharZero
Int.instCharZero
padicValRat.mul
padicValNat_eq_maxPowDiv πŸ“–mathematicalβ€”padicValNat
Nat.maxPowDiv
β€”padicValNat_def'
LT.lt.ne'
maxPowDiv_eq_multiplicity
Nat.finiteMultiplicity_iff
Mathlib.Tactic.Push.not_and_or_eq
Nat.maxPowDiv.go.eq_1
le_antisymm
Mathlib.Tactic.IntervalCases.of_le_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_ofNat
Nat.maxPowDiv.zero_base
zero
Nat.maxPowDiv.zero
pow πŸ“–mathematicalβ€”padicValNat
Monoid.toNatPow
Nat.instMonoid
β€”Int.instCharZero
padicValRat_of_nat
Nat.cast_pow
Nat.cast_mul
padicValRat.pow
Nat.cast_ne_zero
Rat.instCharZero
prime_pow πŸ“–mathematicalβ€”padicValNat
Monoid.toNatPow
Nat.instMonoid
β€”pow
Nat.Prime.ne_zero
Fact.out
padicValNat_self
mul_one
self πŸ“–mathematicalβ€”padicValNatβ€”padicValNat_def'
LT.lt.ne'
ne_zero_of_lt
multiplicity_self
Nat.instIsCancelMulZero

padicValRat

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_min πŸ“–mathematicalβ€”padicValRatβ€”min_le_padicValRat_add
ne_of_eq_of_ne
add_neg_cancel_right
neg
add_comm
add_eq_of_lt πŸ“–β€”padicValRatβ€”β€”add_eq_min
ne_of_lt
min_eq_left
le_of_lt
defn πŸ“–mathematicalβ€”padicValRat
multiplicity
Int.instMonoid
β€”Rat.mk_denom_ne_zero_of_ne_zero
multiplicity_sub_multiplicity
Nat.Prime.ne_one
Fact.out
multiplicity_mul
Int.instIsCancelMulZero
Nat.prime_iff_prime_int
IsDomain.to_noZeroDivisors
Int.instIsDomain
Nat.cast_add
Int.natCast_multiplicity
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
div πŸ“–mathematicalβ€”padicValRatβ€”div_eq_mul_inv
mul
inv_ne_zero
inv
sub_eq_add_neg
finite_int_prime_iff πŸ“–mathematicalβ€”FiniteMultiplicity
Int.instMonoid
β€”Nat.Prime.ne_one
Fact.out
inv πŸ“–mathematicalβ€”padicValRatβ€”inv_zero
zero
neg_zero
eq_neg_iff_add_eq_zero
mul
inv_ne_zero
inv_mul_cancelβ‚€
one
le_padicValRat_add_of_le πŸ“–β€”padicValRatβ€”β€”zero
zero_add
add_zero
Rat.num_ne_zero
Nat.cast_zero
Int.instCharZero
Rat.add_num_den
Rat.mk_num_ne_zero_of_ne_zero
padicValRat_le_padicValRat_iff
mul_ne_zero
IsDomain.to_noZeroDivisors
Int.instIsDomain
emultiplicity_le_emultiplicity_iff
mul_left_comm
emultiplicity_mul
Int.instIsCancelMulZero
Nat.prime_iff_prime_int
Fact.out
add_mul
Distrib.rightDistribClass
le_min
add_comm
le_refl
mul_assoc
le_imp_le_of_le_of_le
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
min_le_emultiplicity_add
lt_add_of_lt πŸ“–β€”padicValRatβ€”β€”lt_of_lt_of_le
lt_min
min_le_padicValRat_add
lt_sum_of_lt πŸ“–mathematicalFinset.Nonempty
padicValRat
Finset.sum
Rat.addCommMonoid
β€”Finset.Nonempty.cons_induction
Finset.sum_singleton
Finset.cons_eq_insert
Finset.sum_insert
lt_add_of_lt
ne_of_gt
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Rat.instAddLeftMono
Finset.sum_pos
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Rat.instIsStrictOrderedRing
Finset.mem_insert
min_le_padicValRat_add πŸ“–mathematicalβ€”padicValRatβ€”le_total
min_eq_left
le_padicValRat_add_of_le
min_eq_right
add_comm
mul πŸ“–mathematicalβ€”padicValRatβ€”Rat.mul_eq_mkRat
Rat.mkRat_eq_divInt
Nat.cast_mul
Nat.prime_iff_prime_int
Fact.out
defn
mul_ne_zero
IsDomain.to_noZeroDivisors
Rat.isDomain
multiplicity_mul
Int.instIsCancelMulZero
Int.instIsDomain
Nat.cast_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
multiplicity_sub_multiplicity πŸ“–mathematicalβ€”padicValRat
multiplicity
Int.instMonoid
Nat.instMonoid
β€”eq_1
padicValInt.of_ne_one_ne_zero
Rat.num_ne_zero
padicValNat_def'
Rat.den_ne_zero
neg πŸ“–mathematicalβ€”padicValRatβ€”β€”
of_int πŸ“–mathematicalβ€”padicValRat
padicValInt
β€”padicValNat.one
Nat.cast_zero
sub_zero
of_int_multiplicity πŸ“–mathematicalβ€”padicValRat
multiplicity
Int.instMonoid
β€”of_int
padicValInt.of_ne_one_ne_zero
of_nat πŸ“–mathematicalβ€”padicValRat
padicValNat
β€”padicValInt.of_nat
padicValNat.one
Nat.cast_zero
sub_zero
one πŸ“–mathematicalβ€”padicValRatβ€”padicValInt.one
Nat.cast_zero
padicValNat.one
sub_self
padicValRat_le_padicValRat_iff πŸ“–mathematicalβ€”padicValRat
Monoid.toNatPow
Int.instMonoid
β€”finite_int_prime_iff
mul_ne_zero
IsDomain.to_noZeroDivisors
Int.instIsDomain
defn
Rat.divInt_ne_zero_of_ne_zero
sub_le_iff_le_add'
Int.instAddLeftMono
add_sub_assoc
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
Int.instZeroLEOneClass
Int.instCharZero
multiplicity_mul
Int.instIsCancelMulZero
Nat.prime_iff_prime_int
Fact.out
add_comm
FiniteMultiplicity.multiplicity_le_multiplicity_iff
pow πŸ“–mathematicalβ€”padicValRatβ€”pow_zero
one
Nat.cast_zero
MulZeroClass.zero_mul
pow_succ'
mul
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
Rat.isDomain
Nat.cast_add
Nat.cast_one
add_mul
Distrib.rightDistribClass
one_mul
add_comm
self πŸ“–mathematicalβ€”padicValRatβ€”of_nat
padicValNat.self
Nat.cast_one
self_pow_inv πŸ“–mathematicalβ€”padicValRatβ€”inv
pow
Nat.cast_ne_zero
Rat.instCharZero
Nat.Prime.ne_zero
Fact.elim
self
Nat.Prime.one_lt
mul_one
sum_pos_of_pos πŸ“–mathematicalpadicValRatFinset.sum
Rat.addCommMonoid
Finset.range
β€”Finset.sum_range_succ
zero_add
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
lt_of_lt_of_le
lt_min
lt_trans
min_le_padicValRat_add
zero πŸ“–mathematicalβ€”padicValRatβ€”padicValInt.zero
Nat.cast_zero
padicValNat.one
sub_self

---

← Back to Index