📁 Source: Mathlib/NumberTheory/Padics/ProperSpace.lean
instProperSpace
compactSpace
totallyBounded_univ
ProperSpace
Padic
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
normedField
Metric.closedBall_mem_nhds
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsCompact.locallyCompactSpace_of_mem_nhds_of_addGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
PadicInt.compactSpace
dist_eq_norm_sub
sub_zero
ProperSpace.of_nontriviallyNormedField_of_weaklyLocallyCompactSpace
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
CompactSpace
PadicInt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instNormedCommRing
isCompact_univ_iff
isCompact_iff_totallyBounded_isComplete
complete_univ
completeSpace
TotallyBounded
Set.univ
Metric.totallyBounded_iff
exists_pow_neg_lt
Set.toFinite
Finite.Set.finite_image
Finite.of_fintype
Set.iUnion_congr_Prop
Set.image_congr
appr_lt
LE.le.trans_lt
norm_le_pow_iff_mem_span_pow
appr_spec
---
← Back to Index