Documentation Verification Report

WithVal

πŸ“ Source: Mathlib/NumberTheory/Padics/WithVal.lean

Statistics

MetricCount
DefinitionswithValRingEquiv, withValUniformEquiv, withValIntegersRingEquiv, withValIntegersUniformEquiv
4
Theoremscoe_withValRingEquiv, coe_withValRingEquiv_symm, isDenseInducing_cast_withVal, isUniformInducing_cast_withVal, norm_rat_le_one_iff_padicValuation_le_one, toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, withValUniformEquiv_cast_apply, withValUniformEquiv_norm_le_one_iff
8
Total12

Padic

Definitions

NameCategoryTheorems
withValRingEquiv πŸ“–CompOp
3 mathmath: toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, coe_withValRingEquiv, coe_withValRingEquiv_symm
withValUniformEquiv πŸ“–CompOp
3 mathmath: withValUniformEquiv_norm_le_one_iff, toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, withValUniformEquiv_cast_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_withValRingEquiv πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Valuation.Completion
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Rat.padicValuation
Padic
UniformSpace.Completion.mul
WithVal
WithVal.instRing
Valued.toUniformSpace
WithVal.instValued
instMul
instAddCompletion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithVal.instCommRing
Rat.commRing
instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
withValRingEquiv
UniformSpace.Completion.extension
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
normedField
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Distrib.toMul
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
WithVal.equiv
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
coe_withValRingEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Padic
Valuation.Completion
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Rat.padicValuation
instMul
UniformSpace.Completion.mul
WithVal
WithVal.instRing
Valued.toUniformSpace
WithVal.instValued
instAdd
instAddCompletion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithVal.instCommRing
Rat.commRing
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
withValRingEquiv
IsDenseInducing.extend
UniformSpace.Completion
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
normedField
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithVal.instField
Rat.instField
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
RingHom.instFunLike
RingHom.comp
Rat.semiring
Rat.castHom
instCharZero
RingEquiv.toRingHom
WithVal.equiv
UniformSpace.Completion.uniformSpace
isDenseInducing_cast_withVal
UniformSpace.Completion.coe'
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
isDenseInducing_cast_withVal πŸ“–mathematicalβ€”IsDenseInducing
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Rat.padicValuation
Padic
UniformSpace.toTopologicalSpace
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
normedField
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithVal.instField
Rat.instField
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
RingHom.instFunLike
RingHom.comp
Rat.semiring
Rat.castHom
instCharZero
RingEquiv.toRingHom
WithVal.equiv
β€”IsUniformInducing.isDenseInducing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
instCharZero
isUniformInducing_cast_withVal
EquivLike.range_comp
denseRange_ratCast
isUniformInducing_cast_withVal πŸ“–mathematicalβ€”IsUniformInducing
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Rat.padicValuation
Padic
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
normedField
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithVal.instField
Rat.instField
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
RingHom.instFunLike
RingHom.comp
Rat.semiring
Rat.castHom
instCharZero
RingEquiv.toRingHom
WithVal.equiv
β€”IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.nontrivial
Nat.Prime.pos
Fact.out
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instIsOrderedRing
Real.instNontrivial
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
Nat.Prime.one_lt
Real.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
RCLike.charZero_rclike
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
instCharZero
Filter.HasBasis.isUniformInducing_iff
Valued.hasBasis_uniformity
Metric.uniformity_basis_dist_le_pow
dist_eq_norm_sub
inv_pow
RingHomClass.toAddMonoidHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
eq_padicNorm
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Nat.cast_pow
Rat.cast_natCast
Rat.cast_inv_of_ne_zero
Int.cast_pow
Int.cast_natCast
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Nat.Prime.ne_zero
Rat.cast_le
map_sub
zpow_neg
Rat.instPosMulMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
zpow_natCast
zpow_right_monoβ‚€
Nat.cast_one
Nat.Prime.one_le
LT.lt.le
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Units.val_mk0
Valuation.map_sub_swap
WithZero.lt_log_iff_exp_lt
WithZero.instNontrivial
zpow_le_zpow_iff_rightβ‚€
WithZero.log_mul
WithZero.log_inv
Nat.cast_natAbs
Int.cast_abs
Int.cast_add
Int.cast_neg
Int.cast_one
norm_rat_le_one_iff_padicValuation_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Padic
instNorm
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
normedField
Real.instOne
WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
DFunLike.coe
Valuation
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Valuation.instFunLike
Rat.padicValuation
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Rat.padicValuation_le_one_iff
Nat.Prime.coprime_iff_not_dvd
Fact.out
PadicInt.isUnit_iff
PadicInt.isUnit_den
norm_rat_le_one
toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv πŸ“–mathematicalβ€”EquivLike.toEquiv
Valuation.Completion
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Rat.padicValuation
Padic
UniformEquiv
UniformSpace.Completion.uniformSpace
WithVal
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
normedField
UniformEquiv.instEquivLike
withValUniformEquiv
RingEquiv
UniformSpace.Completion.mul
instMul
instAddCompletion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithVal.instCommRing
Rat.commRing
instAdd
RingEquiv.instEquivLike
withValRingEquiv
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
withValUniformEquiv_cast_apply πŸ“–mathematicalβ€”DFunLike.coe
UniformEquiv
Valuation.Completion
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Rat.padicValuation
Padic
UniformSpace.Completion.uniformSpace
WithVal
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
normedField
EquivLike.toFunLike
UniformEquiv.instEquivLike
withValUniformEquiv
UniformSpace.Completion.coe'
DivisionRing.toRatCast
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toAdd
RingEquiv.instEquivLike
WithVal.equiv
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
UniformSpace.Completion.extension_coe
instCharZero
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
IsUniformInducing.uniformContinuous
isUniformInducing_cast_withVal
withValUniformEquiv_norm_le_one_iff πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Padic
instNorm
DFunLike.coe
UniformEquiv
Valuation.Completion
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Rat.instNormedField
Rat.padicValuation
UniformSpace.Completion.uniformSpace
WithVal
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
normedField
EquivLike.toFunLike
UniformEquiv.instEquivLike
withValUniformEquiv
Real.instOne
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
UniformSpace.Completion.ring
DivisionRing.toRing
Field.toDivisionRing
WithVal.instField
Rat.instField
IsTopologicalDivisionRing.toIsTopologicalRing
UniformSpace.toTopologicalSpace
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Valuation.instFunLike
Valued.v
Valued.valuedCompletion
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
UniformSpace.Completion.induction_on
IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Set.ext
Homeomorph.isClosed_setOf_iff
Valued.isClopen_closedBall
one_ne_zero
NeZero.one
WithZero.instNontrivial
dist_zero_right
IsUltrametricDist.isClopen_closedBall
instIsUltrametricDist
NeZero.charZero_one
RCLike.charZero_rclike
Valued.valuedCompletion_apply
WithVal.apply_equiv
withValUniformEquiv_cast_apply
norm_rat_le_one_iff_padicValuation_le_one

PadicInt

Definitions

NameCategoryTheorems
withValIntegersRingEquiv πŸ“–CompOpβ€”
withValIntegersUniformEquiv πŸ“–CompOpβ€”

---

← Back to Index