Documentation Verification Report

Pell

šŸ“ Source: Mathlib/NumberTheory/Pell.lean

Statistics

MetricCount
DefinitionsIsFundamental, Solution₁, instCoeZsqrtd, instCommGroup, instHasDistribNeg, instInhabited, mk, x, y
9
Theoremsd_nonsquare, d_pos, eq_pow_of_nonneg, eq_zpow_or_neg_zpow, exists_of_not_isSquare, mul_inv_x_lt_x, mul_inv_x_pos, mul_inv_y_nonneg, subsingleton, x_le_x, x_mul_y_le_y_mul_x, x_pos, y_le_y, y_strictMono, zpow_eq_one_iff, zpow_ne_neg_zpow, zpow_y_lt_iff_lt, coe_mk, d_nonsquare_of_one_lt_x, d_pos_of_one_lt_x, eq_one_of_x_eq_one, eq_one_or_neg_one_iff_y_eq_zero, eq_zero_of_d_neg, exists_nontrivial_of_not_isSquare, exists_pos_of_not_isSquare, exists_pos_variant, ext, ext_iff, prop, prop_x, prop_y, sign_y_zpow_eq_sign_of_x_pos_of_y_pos, x_inv, x_mk, x_mul, x_mul_pos, x_ne_zero, x_neg, x_one, x_pow_pos, x_zpow_pos, y_inv, y_mk, y_mul, y_mul_pos, y_ne_zero_of_one_lt_x, y_neg, y_one, y_pow_succ_pos, y_zpow_pos, existsUnique_pos_generator, exists_iff_not_isSquare, exists_of_not_isSquare, is_pell_solution_iff_mem_unitary, pos_generator_iff_fundamental
55
Total64

Pell

Definitions

NameCategoryTheorems
IsFundamental šŸ“–MathDef
2 mathmath: IsFundamental.exists_of_not_isSquare, pos_generator_iff_fundamental
Solution₁ šŸ“–CompOp
28 mathmath: Solution₁.y_pow_succ_pos, Solution₁.sign_y_zpow_eq_sign_of_x_pos_of_y_pos, existsUnique_pos_generator, IsFundamental.mul_inv_x_pos, Solution₁.eq_one_or_neg_one_iff_y_eq_zero, IsFundamental.eq_zpow_or_neg_zpow, Solution₁.x_mul, IsFundamental.zpow_eq_one_iff, Solution₁.y_zpow_pos, Solution₁.y_mul_pos, Solution₁.y_neg, IsFundamental.mul_inv_y_nonneg, Solution₁.eq_one_of_x_eq_one, Solution₁.exists_pos_variant, IsFundamental.zpow_y_lt_iff_lt, Solution₁.x_one, Solution₁.y_inv, IsFundamental.mul_inv_x_lt_x, Solution₁.x_mul_pos, Solution₁.x_neg, Solution₁.x_inv, IsFundamental.eq_pow_of_nonneg, pos_generator_iff_fundamental, Solution₁.y_one, Solution₁.y_mul, Solution₁.x_pow_pos, IsFundamental.y_strictMono, Solution₁.x_zpow_pos

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique_pos_generator šŸ“–mathematicalIsSquareExistsUnique
Solution₁
Solution₁.x
Solution₁.y
—IsFundamental.exists_of_not_isSquare
IsFundamental.eq_zpow_or_neg_zpow
sub_eq_add_neg
zpow_add
neg_mul
zpow_neg_one
mul_inv_eq_one
zpow_mul
Int.isUnit_iff
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
sub_eq_zero
IsFundamental.zpow_eq_one_iff
zpow_one
lt_irrefl
LT.lt.trans
neg_zero
lt_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Solution₁.y_inv
IsFundamental.zpow_ne_neg_zpow
zpow_zero
Solution₁.x_zpow_pos
zero_lt_one
Int.instZeroLEOneClass
Solution₁.x_neg
Mathlib.Meta.NormNum.isInt_lt_false
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
exists_iff_not_isSquare šŸ“–mathematical—Monoid.toNatPow
Int.instMonoid
IsSquare
—sub_eq_add_neg
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Int.instCharZero
mul_self_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Int.instAddLeftMono
contravariant_lt_of_covariant_le
Int.eq_of_mul_eq_one
sq_sub_sq
mul_pow
sq
exists_of_not_isSquare
exists_of_not_isSquare šŸ“–mathematicalIsSquareMonoid.toNatPow
Int.instMonoid
—irrational_nrt_of_notint_nrt
Real.sq_sqrt
Int.cast_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
LT.lt.le
Int.cast_injective
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Int.cast_mul
sq
two_pos
Nat.instZeroLEOneClass
Nat.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
exists_int_gt
Real.instArchimedean
Set.Infinite.mono
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Rat.pos
Int.cast_natCast
Rat.instCharZero
Rat.num_div_den
Set.mem_setOf
abs_sub_comm
Int.cast_lt
NeZero.charZero_one
div_lt_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
abs_pos_of_pos
Int.cast_abs
Int.cast_sub
Int.cast_pow
abs_div
abs_sq
sub_div
mul_div_cancel_rightā‚€
EuclideanDomain.toMulDivCancelClass
LT.lt.ne'
div_pow
Int.cast_pos
sq_sub_sq
abs_mul
mul_one_div
mul_lt_mul''
IsOrderedRing.toMulPosMono
LE.le.trans_lt
LE.le.trans
abs_add_le
two_mul
add_assoc
add_le_add_iff_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
sub_le_iff_le_add'
abs_sub_abs_le_abs_sub
div_le_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
one_le_sq_iff_one_le_abs
Nat.abs_cast
Nat.one_le_cast
abs_nonneg
covariant_swap_add_of_covariant_add
Real.infinite_rat_abs_sub_lt_one_div_den_sq_of_irrational
Mathlib.Tactic.Contrapose.contrapose₁
Set.ext
Set.iUnion_congr_Prop
Int.instAddLeftMono
Set.Finite.biUnion
Set.finite_Ioo
Set.Infinite.nonempty
two_ne_zero
mul_comm
sub_eq_zero
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
Int.instIsCancelMulZero
Int.instIsStrictOrderedRing
Int.instZeroLEOneClass
mul_pow
Set.Infinite.exists_ne_map_eq_of_mapsTo
Set.mapsTo_univ
Set.finite_univ
Finite.instProd
Finite.of_fintype
ZMod.intCast_zmod_eq_zero_iff_dvd
Nat.cast_zero
Nat.cast_pow
Int.cast_zero
dvd_refl
ZMod.intCast_eq_intCast_iff_dvd_sub
Int.cast_ne_zero
Int.cast_div_charZero
Int.cast_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalā‚ƒ
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_evalā‚ƒ
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
div_ne_zero_iff
Rat.eq_iff_mul_eq_mul
is_pell_solution_iff_mem_unitary šŸ“–mathematical—Monoid.toNatPow
Int.instMonoid
Zsqrtd.re
Zsqrtd.im
Zsqrtd
Submonoid
Monoid.toMulOneClass
Zsqrtd.instMonoid
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Zsqrtd.commRing
Zsqrtd.instStarRing
—Zsqrtd.norm_eq_one_iff_mem_unitary
Zsqrtd.norm_def
sq
mul_assoc
pos_generator_iff_fundamental šŸ“–mathematical—Solution₁.x
Solution₁.y
Solution₁
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
Solution₁.instCommGroup
InvolutiveNeg.toNeg
HasDistribNeg.toInvolutiveNeg
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Solution₁.instHasDistribNeg
IsFundamental
—Solution₁.d_pos_of_one_lt_x
Solution₁.d_nonsquare_of_one_lt_x
IsFundamental.exists_of_not_isSquare
existsUnique_pos_generator
IsFundamental.eq_zpow_or_neg_zpow

Pell.IsFundamental

Theorems

NameKindAssumesProvesValidatesDepends On
d_nonsquare šŸ“–mathematicalPell.IsFundamentalIsSquare—Pell.Solution₁.d_nonsquare_of_one_lt_x
d_pos šŸ“–ā€”Pell.IsFundamental——Pell.Solution₁.d_pos_of_one_lt_x
eq_pow_of_nonneg šŸ“–mathematicalPell.IsFundamental
Pell.Solution₁.x
Pell.Solution₁.y
Pell.Solution₁
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Pell.Solution₁.instCommGroup
—CanLift.prf
instCanLiftIntNatCastLeOfNat
LT.lt.le
Nat.strong_induction_on
LE.le.eq_or_lt
pow_zero
Pell.Solution₁.ext
Pell.Solution₁.prop
sq_eq_one_iff
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
sub_zero
MulZeroClass.mul_zero
MulZeroClass.zero_mul
sq
LE.le.trans_eq
LT.lt.trans_eq
Mathlib.Meta.NormNum.isInt_le_false
IsStrictOrderedRing.toIsOrderedRing
Int.instNontrivial
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_nonpos_of_le
neg_eq_zero
mul_nonneg_of_nonpos_of_nonpos
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
sq_nonneg
IsOrderedRing.toPosMulMono
d_pos
Mathlib.Tactic.Linarith.mul_zero_eq
Mathlib.Tactic.Linarith.natCast_nonneg
Mathlib.Tactic.Linarith.zero_mul_eq
mul_inv_x_pos
mul_inv_x_lt_x
mul_inv_y_nonneg
Int.instZeroLEOneClass
Int.instCharZero
pow_succ'
mul_comm
mul_assoc
mul_inv_cancel
one_mul
eq_zpow_or_neg_zpow šŸ“–mathematicalPell.IsFundamentalPell.Solution₁
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
Pell.Solution₁.instCommGroup
InvolutiveNeg.toNeg
HasDistribNeg.toInvolutiveNeg
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Pell.Solution₁.instHasDistribNeg
—Pell.Solution₁.exists_pos_variant
d_pos
eq_pow_of_nonneg
zpow_natCast
zpow_neg
Set.mem_singleton_iff
exists_of_not_isSquare šŸ“–mathematicalIsSquarePell.IsFundamental—Pell.Solution₁.exists_pos_of_not_isSquare
Pell.Solution₁.prop
CanLift.prf
instCanLiftIntNatCastLeOfNat
le_of_lt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
Nat.find_spec
Nat.cast_zero
Nat.find.congr_simp
LE.le.trans
zero_le_one
LT.lt.le
Nat.find_min'
abs_pos
Pell.Solution₁.y_ne_zero_of_one_lt_x
sq_abs
mul_inv_x_lt_x šŸ“–mathematicalPell.IsFundamental
Pell.Solution₁.x
Pell.Solution₁.y
Pell.Solution₁
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Pell.Solution₁.instCommGroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
—Pell.Solution₁.x_mul
mul_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
lt_of_mul_lt_mul_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
x_mul_y_le_y_mul_x
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
le_of_lt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Int.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
mul_assoc
sq
Pell.Solution₁.prop_x
sub_neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
abs_of_pos
LT.lt.trans
zero_lt_one
Int.instZeroLEOneClass
abs_mul
sq_lt_sq
mul_pow
one_mul
mul_le_mul_iff_leftā‚€
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
sq_pos_of_pos
d_pos
lt_add_one
add_comm
mul_one
mul_le_mul_iff_rightā‚€
IsOrderedRing.toPosMulMono
add_pos'
mul_pos
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
LT.lt.le
mul_inv_x_pos šŸ“–mathematicalPell.IsFundamental
Pell.Solution₁.x
Pell.Solution₁.y
Pell.Solution₁
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Pell.Solution₁.instCommGroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
—Pell.Solution₁.x_mul
mul_neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
zero_add
lt_of_mul_lt_mul_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
x_mul_y_le_y_mul_x
d_pos
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
le_of_lt
mul_pos
Pell.Solution₁.prop_y
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
LE.le.trans
zero_le_one
Int.instZeroLEOneClass
LT.lt.le
mul_inv_y_nonneg šŸ“–mathematicalPell.IsFundamental
Pell.Solution₁.x
Pell.Solution₁.y
Pell.Solution₁
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Pell.Solution₁.instCommGroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
—mul_neg
Int.instAddLeftMono
add_zero
x_mul_y_le_y_mul_x
subsingleton šŸ“–ā€”Pell.IsFundamental——le_antisymm
Pell.Solution₁.ext
Pell.Solution₁.prop_y
sq_eq_sqā‚€
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
LT.lt.le
LT.lt.ne'
d_pos
x_le_x šŸ“–ā€”Pell.IsFundamental
Pell.Solution₁.x
———
x_mul_y_le_y_mul_x šŸ“–ā€”Pell.IsFundamental
Pell.Solution₁.x
Pell.Solution₁.y
——abs_of_pos
Int.instAddLeftMono
LT.lt.trans
zero_lt_one
Int.instZeroLEOneClass
x_pos
abs_mul
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
sq_le_sq
mul_pow
Pell.Solution₁.prop_x
sub_nonneg
covariant_swap_add_of_covariant_add
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_neg
y_le_y
x_pos šŸ“–mathematicalPell.IsFundamentalPell.Solution₁.x—LT.lt.trans
zero_lt_one
Int.instZeroLEOneClass
y_le_y šŸ“–ā€”Pell.IsFundamental
Pell.Solution₁.x
Pell.Solution₁.y
——Pell.Solution₁.prop_x
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
abs_of_pos
Int.instAddLeftMono
sq_le_sq
Int.instIsStrictOrderedRing
mul_le_mul_iff_rightā‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
d_pos
sub_nonpos
covariant_swap_add_of_covariant_add
mul_sub
LT.lt.trans
zero_lt_one
Int.instZeroLEOneClass
x_le_x
y_strictMono šŸ“–mathematicalPell.IsFundamentalStrictMono
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
Pell.Solution₁.y
Pell.Solution₁
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
Pell.Solution₁.instCommGroup
—sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
zpow_add
zpow_one
Pell.Solution₁.y_mul
add_sub_assoc
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
add_pos_of_pos_of_nonneg
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
Pell.Solution₁.x_zpow_pos
x_pos
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
LE.le.eq_or_lt
zpow_zero
LT.lt.le
Pell.Solution₁.y_zpow_pos
sub_nonneg
strictMono_int_of_lt_succ
le_or_gt
neg_sub
sub_neg_eq_add
add_tsub_cancel_left
AddGroup.toOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
sub_add_cancel
neg_add'
zpow_neg
Pell.Solution₁.y_inv
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
zpow_eq_one_iff šŸ“–mathematicalPell.IsFundamentalPell.Solution₁
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
Pell.Solution₁.instCommGroup
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
—zpow_zero
StrictMono.injective
y_strictMono
zpow_ne_neg_zpow šŸ“–ā€”Pell.IsFundamental——Pell.Solution₁.x_zpow_pos
x_pos
lt_irrefl
LT.lt.trans
neg_zero
lt_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Pell.Solution₁.x_neg
zpow_y_lt_iff_lt šŸ“–mathematicalPell.IsFundamentalPell.Solution₁.y
Pell.Solution₁
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
Pell.Solution₁.instCommGroup
—Mathlib.Tactic.Contrapose.contrapose₁
StrictMono.monotone
y_strictMono

Pell.Solution₁

Definitions

NameCategoryTheorems
instCoeZsqrtd šŸ“–CompOp—
instCommGroup šŸ“–CompOp
27 mathmath: y_pow_succ_pos, sign_y_zpow_eq_sign_of_x_pos_of_y_pos, Pell.IsFundamental.mul_inv_x_pos, eq_one_or_neg_one_iff_y_eq_zero, Pell.IsFundamental.eq_zpow_or_neg_zpow, x_mul, Pell.IsFundamental.zpow_eq_one_iff, y_zpow_pos, y_mul_pos, y_neg, Pell.IsFundamental.mul_inv_y_nonneg, eq_one_of_x_eq_one, exists_pos_variant, Pell.IsFundamental.zpow_y_lt_iff_lt, x_one, y_inv, Pell.IsFundamental.mul_inv_x_lt_x, x_mul_pos, x_neg, x_inv, Pell.IsFundamental.eq_pow_of_nonneg, Pell.pos_generator_iff_fundamental, y_one, y_mul, x_pow_pos, Pell.IsFundamental.y_strictMono, x_zpow_pos
instHasDistribNeg šŸ“–CompOp
6 mathmath: eq_one_or_neg_one_iff_y_eq_zero, Pell.IsFundamental.eq_zpow_or_neg_zpow, y_neg, exists_pos_variant, x_neg, Pell.pos_generator_iff_fundamental
instInhabited šŸ“–CompOp—
mk šŸ“–CompOp—
x šŸ“–CompOp
16 mathmath: Pell.existsUnique_pos_generator, x_mul, exists_pos_variant, prop_y, prop, x_one, exists_pos_of_not_isSquare, x_neg, eq_zero_of_d_neg, x_inv, Pell.pos_generator_iff_fundamental, Pell.IsFundamental.x_pos, prop_x, y_mul, x_mk, ext_iff
y šŸ“–CompOp
18 mathmath: Pell.existsUnique_pos_generator, eq_one_or_neg_one_iff_y_eq_zero, x_mul, y_neg, exists_pos_variant, prop_y, Pell.IsFundamental.zpow_y_lt_iff_lt, prop, exists_pos_of_not_isSquare, y_inv, eq_zero_of_d_neg, Pell.pos_generator_iff_fundamental, prop_x, y_one, y_mk, y_mul, Pell.IsFundamental.y_strictMono, ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mk šŸ“–mathematicalMonoid.toNatPow
Int.instMonoid
Zsqrtd
Submonoid
Monoid.toMulOneClass
Zsqrtd.instMonoid
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Zsqrtd.commRing
Zsqrtd.instStarRing
—Zsqrtd.ext
d_nonsquare_of_one_lt_x šŸ“–mathematicalxIsSquare—prop
sq_sub_sq
d_pos_of_one_lt_x šŸ“–ā€”x——pos_of_mul_pos_left
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Int.instIsStrictOrderedRing
prop_y
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
one_lt_powā‚€
Int.instZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
two_ne_zero
sq_nonneg
AddGroup.existsAddOfLE
eq_one_of_x_eq_one šŸ“–mathematicalxPell.Solution₁
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
—prop_y
ext
sq_eq_zero_iff
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
mul_eq_zero
sub_self
one_pow
eq_one_or_neg_one_iff_y_eq_zero šŸ“–mathematical—Pell.Solution₁
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
InvolutiveNeg.toNeg
HasDistribNeg.toInvolutiveNeg
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instHasDistribNeg
y
—neg_zero
prop
ext
sq_eq_one_iff
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
sub_zero
MulZeroClass.mul_zero
sq
eq_zero_of_d_neg šŸ“–mathematical—x
y
—prop
Mathlib.Tactic.Contrapose.contrapose₁
sq_pos_of_ne_zero
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
sub_eq_zero_of_eq
mul_nonneg_of_nonpos_of_nonpos
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
sq_nonneg
IsOrderedRing.toPosMulMono
exists_nontrivial_of_not_isSquare šŸ“–ā€”IsSquare——Pell.exists_of_not_isSquare
neg_zero
exists_pos_of_not_isSquare šŸ“–mathematicalIsSquarex
y
—Pell.exists_of_not_isSquare
sq_abs
one_lt_sq_iff_one_lt_abs
Int.instIsStrictOrderedRing
eq_add_of_sub_eq
lt_add_iff_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
contravariant_lt_of_covariant_le
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
sq_pos_of_ne_zero
AddGroup.existsAddOfLE
abs_pos
exists_pos_variant šŸ“–mathematical—x
y
Pell.Solution₁
Set
Set.instMembership
Set.instInsert
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
InvolutiveNeg.toNeg
HasDistribNeg.toInvolutiveNeg
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instHasDistribNeg
Set.instSingletonSet
—lt_or_gt_of_ne
x_ne_zero
LT.lt.le
le_total
neg_inv
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
neg_neg
inv_inv
ext šŸ“–ā€”x
y
——Zsqrtd.ext
ext_iff šŸ“–mathematical—x
y
—ext
prop šŸ“–mathematical—Monoid.toNatPow
Int.instMonoid
x
y
—Pell.is_pell_solution_iff_mem_unitary
prop_x šŸ“–mathematical—Monoid.toNatPow
Int.instMonoid
x
y
—prop
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
prop_y šŸ“–mathematical—Monoid.toNatPow
Int.instMonoid
y
x
—prop
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
sign_y_zpow_eq_sign_of_x_pos_of_y_pos šŸ“–mathematicalx
y
Pell.Solution₁
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
—zpow_natCast
y_pow_succ_pos
zpow_negSucc
neg_neg_of_pos
Int.instIsOrderedAddMonoid
x_inv šŸ“–mathematical—x
Pell.Solution₁
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
——
x_mk šŸ“–mathematicalMonoid.toNatPow
Int.instMonoid
x——
x_mul šŸ“–mathematical—x
Pell.Solution₁
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
y
—mul_assoc
x_mul_pos šŸ“–mathematicalxPell.Solution₁
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
—x_mul
neg_lt_iff_pos_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
abs_lt
covariant_swap_add_of_covariant_add
abs_of_pos
abs_mul
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
sq_lt_sq
mul_pow
prop_x
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Tactic.RingNF.add_assoc_rev
le_or_gt
add_pos_of_pos_of_nonneg
Mathlib.Meta.Positivity.pos_of_isNat
Int.instNontrivial
mul_nonneg
IsOrderedRing.toPosMulMono
Even.pow_nonneg
AddGroup.existsAddOfLE
even_two_mul
eq_zero_of_d_neg
LT.lt.ne'
zero_pow
Nat.instCharZero
MulZeroClass.mul_zero
Int.instZeroLEOneClass
x_ne_zero šŸ“–ā€”ā€”ā€”ā€”mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
sq_nonneg
AddGroup.existsAddOfLE
Int.instAddLeftMono
not_le
neg_one_lt_zero
Int.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
zero_sub
MulZeroClass.zero_mul
sq
prop_y
x_neg šŸ“–mathematical—x
Pell.Solution₁
InvolutiveNeg.toNeg
HasDistribNeg.toInvolutiveNeg
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
instHasDistribNeg
——
x_one šŸ“–mathematical—x
Pell.Solution₁
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
——
x_pow_pos šŸ“–mathematicalxPell.Solution₁
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
—pow_zero
Int.instZeroLEOneClass
pow_succ
x_mul_pos
x_zpow_pos šŸ“–mathematicalxPell.Solution₁
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
—zpow_natCast
x_pow_pos
zpow_negSucc
y_inv šŸ“–mathematical—y
Pell.Solution₁
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
——
y_mk šŸ“–mathematicalMonoid.toNatPow
Int.instMonoid
y——
y_mul šŸ“–mathematical—y
Pell.Solution₁
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
x
——
y_mul_pos šŸ“–mathematicalx
y
Pell.Solution₁
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
—add_pos'
Int.instAddLeftMono
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
y_ne_zero_of_one_lt_x šŸ“–ā€”x——prop
lt_irrefl
LT.lt.trans_eq
one_lt_sq_iffā‚€
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
Int.instZeroLEOneClass
LE.le.trans
zero_le_one
LT.lt.le
sub_zero
MulZeroClass.mul_zero
MulZeroClass.zero_mul
sq
y_neg šŸ“–mathematical—y
Pell.Solution₁
InvolutiveNeg.toNeg
HasDistribNeg.toInvolutiveNeg
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
instHasDistribNeg
——
y_one šŸ“–mathematical—y
Pell.Solution₁
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroup
——
y_pow_succ_pos šŸ“–mathematicalx
y
Pell.Solution₁
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
—pow_one
pow_succ'
y_mul_pos
x_pow_pos
y_zpow_pos šŸ“–mathematicalx
y
Pell.Solution₁
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroup
—CanLift.prf
instCanLiftIntNatCastLeOfNat
LT.lt.le
Nat.cast_zero
zpow_natCast
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
y_pow_succ_pos

---

← Back to Index