| Name | Category | Theorems |
IsPell π | MathDef | 6 mathmath: isPell_norm, isPell_iff_mem_unitary, isPell_nat, isPell_star, isPell_pellZd, isPell_one
|
az π | CompOp | 3 mathmath: dz_val, xz_succ, yz_succ
|
pell π | CompOp | 1 mathmath: pell_val
|
pellZd π | CompOp | 10 mathmath: pellZd_sub, eq_pellZd, pellZd_succ, pellZd_succ_succ, re_pellZd, pellZd_re, pellZd_add, im_pellZd, isPell_pellZd, pellZd_im
|
xn π | CompOp | 32 mathmath: eq_of_xn_modEq_lem3, xy_succ_succ, xn_modEq_x4n_add, eq_pell, yn_add, xn_succ, Dioph.xn_dioph, x_pos, xy_modEq_yn, xy_coprime, yn_succ, n_lt_xn, re_pellZd, xn_modEq_x2n_sub, xy_modEq_of_modEq, matiyasevic, pell_val, xn_modEq_x2n_add, pellZd_re, strictMono_x, xn_modEq_x2n_add_lem, xn_add, xn_succ_succ, Dioph.pell_dioph, xn_modEq_x4n_sub, xn_one, xn_zero, pell_eq, xn_modEq_x2n_sub_lem, eq_pow_of_pell, eq_of_xn_modEq_lem1, xn_ge_a_pow
|
xz π | CompOp | 7 mathmath: yz_sub, xz_sub, pell_eqz, xz_succ, x_sub_y_dvd_pow, xz_succ_succ, yz_succ
|
yn π | CompOp | 27 mathmath: ysq_dvd_yy, xy_succ_succ, yn_ge_n, eq_pell, yn_add, xn_succ, strictMono_y, xy_modEq_yn, xy_coprime, yn_zero, yn_succ, xy_modEq_of_modEq, matiyasevic, pell_val, y_dvd_iff, y_mul_dvd, xn_modEq_x2n_add_lem, xn_add, yn_one, Dioph.pell_dioph, yn_modEq_two, im_pellZd, pell_eq, pellZd_im, yn_modEq_a_sub_one, eq_pow_of_pell, yn_succ_succ
|
yz π | CompOp | 7 mathmath: yz_sub, xz_sub, yz_succ_succ, pell_eqz, xz_succ, x_sub_y_dvd_pow, yz_succ
|