Documentation Verification Report

PrimeCounting

πŸ“ Source: Mathlib/NumberTheory/PrimeCounting.lean

Statistics

MetricCount
DefinitionstermΟ€, termΟ€', primeCounting, primeCounting'
4
Theoremsadd_two_le_nth_prime, monotone_primeCounting, monotone_primeCounting', primeCounting'_add_le, primeCounting'_eq_zero_iff, primeCounting'_nth_eq, primeCounting_eq_zero_iff, primeCounting_one, primeCounting_sub_one, primeCounting_zero, prime_nth_prime, primesBelow_card_eq_primeCounting', surjective_primeCounting, surjective_primeCounting', tendsto_primeCounting, tendsto_primeCounting'
16
Total20

Nat

Definitions

NameCategoryTheorems
primeCounting πŸ“–CompOp
10 mathmath: primeCounting_sub_one, tendsto_primeCounting, Chebyshev.primeCounting_eq_theta_div_log_add_integral, Chebyshev.primeCounting_sub_theta_div_log_isBigO, surjective_primeCounting, primeCounting_zero, primeCounting_eq_zero_iff, monotone_primeCounting, Chebyshev.eventually_primeCounting_le, primeCounting_one
primeCounting' πŸ“–CompOp
8 mathmath: primeCounting_sub_one, monotone_primeCounting', primeCounting'_add_le, surjective_primeCounting', primesBelow_card_eq_primeCounting', primeCounting'_nth_eq, tendsto_primeCounting', primeCounting'_eq_zero_iff

Theorems

NameKindAssumesProvesValidatesDepends On
add_two_le_nth_prime πŸ“–mathematicalβ€”nth
Prime
β€”StrictMono.add_le_nat
nth_strictMono
infinite_setOf_prime
nth_prime_zero_eq_two
monotone_primeCounting πŸ“–mathematicalβ€”Monotone
instPreorder
primeCounting
β€”Monotone.comp
monotone_primeCounting'
Monotone.add_const
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
monotone_id
monotone_primeCounting' πŸ“–mathematicalβ€”Monotone
instPreorder
primeCounting'
β€”count_monotone
primeCounting'_add_le πŸ“–mathematicalβ€”primeCounting'
totient
β€”primeCounting'.eq_1
count_eq_card_filter_range
Finset.range_eq_Ico
Finset.Ico_union_Ico_eq_Ico
le_self_add
instCanonicallyOrderedAdd
Finset.filter_union
Finset.card_union_le
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Finset.card_le_card
Finset.monotone_filter_right
coprime_of_lt_prime
LT.lt.trans_le
Finset.mem_Ico
add_le_add_iff_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Ico_filter_coprime_le
primeCounting'_eq_zero_iff πŸ“–mathematicalβ€”primeCounting'β€”primeCounting'.eq_1
count_eq_zero
prime_two
nth_prime_zero_eq_two
primeCounting'_nth_eq πŸ“–mathematicalβ€”primeCounting'
nth
Prime
β€”count_nth_of_infinite
infinite_setOf_prime
primeCounting_eq_zero_iff πŸ“–mathematicalβ€”primeCountingβ€”β€”
primeCounting_one πŸ“–mathematicalβ€”primeCountingβ€”primeCounting_eq_zero_iff
le_rfl
primeCounting_sub_one πŸ“–mathematicalβ€”primeCounting
primeCounting'
β€”β€”
primeCounting_zero πŸ“–mathematicalβ€”primeCountingβ€”primeCounting_eq_zero_iff
zero_le_one
instZeroLEOneClass
prime_nth_prime πŸ“–mathematicalβ€”Prime
nth
β€”nth_mem_of_infinite
infinite_setOf_prime
primesBelow_card_eq_primeCounting' πŸ“–mathematicalβ€”Finset.card
primesBelow
primeCounting'
β€”count_eq_card_filter_range
surjective_primeCounting πŸ“–mathematicalβ€”primeCountingβ€”primeCounting_sub_one
surjective_primeCounting'
Function.Surjective.of_comp
surjective_primeCounting' πŸ“–mathematicalβ€”primeCounting'β€”surjective_count_of_infinite_setOf
infinite_setOf_prime
tendsto_primeCounting πŸ“–mathematicalβ€”Filter.Tendsto
primeCounting
Filter.atTop
instPreorder
β€”Filter.tendsto_add_atTop_iff_nat
tendsto_primeCounting'
tendsto_primeCounting' πŸ“–mathematicalβ€”Filter.Tendsto
primeCounting'
Filter.atTop
instPreorder
β€”Filter.tendsto_atTop_atTop_of_monotone'
monotone_primeCounting'
Set.range_eq_univ
surjective_primeCounting'
instNoTopOrderOfNoMaxOrder
instNoMaxOrder

Nat.Prime

Definitions

NameCategoryTheorems
termΟ€ πŸ“–CompOpβ€”
termΟ€' πŸ“–CompOpβ€”

---

← Back to Index