Documentation Verification Report

PrimesCongruentOne

πŸ“ Source: Mathlib/NumberTheory/PrimesCongruentOne.lean

Statistics

MetricCount
Definitions0
Theoremsexists_prime_gt_modEq_one, frequently_atTop_modEq_one, infinite_setOf_prime_modEq_one
3
Total3

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
exists_prime_gt_modEq_one πŸ“–mathematicalβ€”Prime
ModEq
β€”LE.le.eq_or_lt
exists_infinite_primes
modEq_one
le_iff_exists_add'
instCanonicallyOrderedAdd
LT.lt.le
le_mul_of_le_of_one_le
instMulLeftMono
factorial_pos
le_tsub_of_add_le_left
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Polynomial.sub_one_lt_natAbs_cyclotomic_eval
LT.lt.ne'
minFac_prime
Int.cast_natCast
map_natCast
RingHom.instRingHomClass
Polynomial.IsRoot.def
Polynomial.map_cyclotomic_int
Polynomial.eval_map
coe_castRingHom
Polynomial.evalβ‚‚_hom
Int.coe_castRingHom
ZMod.intCast_zmod_eq_zero_iff_dvd
minFac_dvd
Prime.coprime_iff_not_dvd
Fact.out
Polynomial.coprime_of_root_cyclotomic
Ne.bot_lt
not_le
dvd_mul_of_dvd_right
dvd_factorial
minFac_pos
ZMod.orderOf_dvd_card_sub_one
CharP.cast_eq_zero_iff
ZMod.charP
IsPrimitiveRoot.eq_orderOf
Polynomial.isRoot_cyclotomic_iff
ZMod.instIsDomain
NeZero.of_not_dvd
dvd_mul_of_dvd_left
ModEq.symm
modEq_iff_dvd'
Prime.pos
frequently_atTop_modEq_one πŸ“–mathematicalβ€”Filter.Frequently
Prime
ModEq
Filter.atTop
instPreorder
β€”Filter.frequently_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
instArchimedeanNat
exists_prime_gt_modEq_one
LT.lt.le
infinite_setOf_prime_modEq_one πŸ“–mathematicalβ€”Set.Infinite
setOf
Prime
ModEq
β€”frequently_atTop_iff_infinite
frequently_atTop_modEq_one

---

← Back to Index