Documentation Verification Report

PythagoreanTriples

πŸ“ Source: Mathlib/NumberTheory/PythagoreanTriples.lean

Statistics

MetricCount
DefinitionsPythagoreanTriple, IsClassified, IsPrimitiveClassified, circleEquivGen
4
Theoremssq_ne_two_mod_four, classification, classified, coprime_classification, coprime_classification', coprime_of_coprime, eq, even_odd_of_coprime, gcd_dvd, isClassified_of_isPrimitiveClassified, isClassified_of_normalize_isPrimitiveClassified, isPrimitiveClassified_aux, isPrimitiveClassified_of_coprime, isPrimitiveClassified_of_coprime_of_odd_of_pos, isPrimitiveClassified_of_coprime_of_pos, isPrimitiveClassified_of_coprime_of_zero_left, mul, mul_iff, mul_isClassified, ne_zero_of_coprime, normalize, zero, circleEquivGen_apply, circleEquivGen_symm_apply, pythagoreanTriple_comm, sq_ne_two_fin_zmod_four
26
Total30

Int

Theorems

NameKindAssumesProvesValidatesDepends On
sq_ne_two_mod_four πŸ“–β€”β€”β€”β€”ZMod.intCast_eq_intCast_iff'
Nat.instAtLeastTwoHAddOfNat
cast_mul
cast_ofNat
sq_ne_two_fin_zmod_four

PythagoreanTriple

Definitions

NameCategoryTheorems
IsClassified πŸ“–MathDef
3 mathmath: isClassified_of_normalize_isPrimitiveClassified, classified, isClassified_of_isPrimitiveClassified
IsPrimitiveClassified πŸ“–MathDef
5 mathmath: isPrimitiveClassified_of_coprime, isPrimitiveClassified_of_coprime_of_pos, isPrimitiveClassified_of_coprime_of_odd_of_pos, isPrimitiveClassified_of_coprime_of_zero_left, isPrimitiveClassified_aux

Theorems

NameKindAssumesProvesValidatesDepends On
classification πŸ“–mathematicalβ€”PythagoreanTriple
Monoid.toNatPow
Int.instMonoid
β€”classified
sq
eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
neg_mul
eq_or_eq_neg_of_sq_eq_sq
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Mathlib.Tactic.Ring.neg_congr
classified πŸ“–mathematicalPythagoreanTripleIsClassifiedβ€”one_pow
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
sub_zero
mul_one
MulZeroClass.mul_zero
Int.natAbs_of_isUnit
isClassified_of_normalize_isPrimitiveClassified
isPrimitiveClassified_of_coprime
normalize
Int.gcd_div_gcd_div_gcd
coprime_classification πŸ“–mathematicalβ€”PythagoreanTriple
Monoid.toNatPow
Int.instMonoid
β€”isPrimitiveClassified_of_coprime
sq
eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
neg_add_rev
eq_or_eq_neg_of_sq_eq_sq
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Mathlib.Tactic.Ring.neg_congr
coprime_classification' πŸ“–mathematicalPythagoreanTripleMonoid.toNatPow
Int.instMonoid
β€”coprime_classification
le_or_gt
not_lt
neg_nonpos
Int.instAddLeftMono
add_nonneg
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
zero_ne_one
mul_assoc
neg_sq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
coprime_of_coprime πŸ“–β€”PythagoreanTripleβ€”β€”Nat.Prime.not_coprime_iff_dvd
Nat.Prime.not_dvd_one
Int.Prime.dvd_natAbs_of_coe_dvd_sq
sq
eq_sub_of_add_eq
dvd_sub
Dvd.dvd.mul_right
Int.natCast_dvd
eq πŸ“–β€”PythagoreanTripleβ€”β€”β€”
even_odd_of_coprime πŸ“–β€”PythagoreanTripleβ€”β€”Int.emod_two_eq_zero_or_one
Int.natCast_dvd
exists_eq_mul_left_of_dvd
sub_eq_iff_eq_add
Int.sq_ne_two_mod_four
eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
zero_add
gcd_dvd πŸ“–β€”PythagoreanTripleβ€”β€”MulZeroClass.mul_zero
add_zero
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Int.exists_gcd_one'
one_mul
two_ne_zero
sq
eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
dvd_mul_right
isClassified_of_isPrimitiveClassified πŸ“–mathematicalPythagoreanTriple
IsPrimitiveClassified
IsClassifiedβ€”β€”
isClassified_of_normalize_isPrimitiveClassified πŸ“–mathematicalPythagoreanTriple
IsPrimitiveClassified
normalize
IsClassifiedβ€”normalize
mul
gcd_dvd
mul_isClassified
isClassified_of_isPrimitiveClassified
isPrimitiveClassified_aux πŸ“–mathematicalPythagoreanTriple
Monoid.toNatPow
Int.instMonoid
Rat.monoid
IsPrimitiveClassifiedβ€”ne_of_gt
coprime_of_coprime
Rat.instCharZero
div_left_inj'
Nat.instAtLeastTwoHAddOfNat
Int.cast_ofNat
isPrimitiveClassified_of_coprime πŸ“–mathematicalPythagoreanTripleIsPrimitiveClassifiedβ€”isPrimitiveClassified_of_coprime_of_pos
mul_neg
neg_mul
neg_neg
eq
lt_of_le_of_ne
le_neg
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
ne_zero_of_coprime
isPrimitiveClassified_of_coprime_of_odd_of_pos πŸ“–mathematicalPythagoreanTripleIsPrimitiveClassifiedβ€”isPrimitiveClassified_of_coprime_of_zero_left
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Int.cast_pos
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
IsOrderedRing.toZeroLEOneClass
NeZero.one
Rat.nontrivial
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
GroupWithZero.toNontrivial
sq
Rat.instCharZero
MulZeroClass.mul_zero
Mathlib.Tactic.Contrapose.contraposeβ‚„
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
add_eq_right
AddRightCancelSemigroup.toIsRightCancelAdd
one_pow
neg_sq
lt_add_of_pos_of_le
IsRightCancelAdd.addRightStrictMono_of_addRightMono
covariant_swap_add_of_covariant_add
Rat.instAddLeftMono
zero_lt_one
Rat.instZeroLEOneClass
NeZero.charZero_one
sq_nonneg
Rat.instPosMulMono
Equiv.apply_symm_apply
Nat.cast_zero
Int.instCharZero
Rat.num_div_den
add_pos_of_pos_of_nonneg
Int.instAddLeftMono
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
Int.instZeroLEOneClass
Even.pow_nonneg
Nat.instAtLeastTwoHAddOfNat
even_two_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Meta.NormNum.isNat_eq_false
Int.emod_two_eq_zero_or_one
isPrimitiveClassified_aux
coprime_of_coprime
isPrimitiveClassified_of_coprime_of_pos πŸ“–mathematicalPythagoreanTripleIsPrimitiveClassifiedβ€”even_odd_of_coprime
isPrimitiveClassified_of_coprime_of_odd_of_pos
symm
isPrimitiveClassified_of_coprime_of_zero_left πŸ“–mathematicalPythagoreanTripleIsPrimitiveClassifiedβ€”β€”
mul πŸ“–β€”PythagoreanTripleβ€”β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
eq
mul_iff πŸ“–mathematicalβ€”PythagoreanTripleβ€”mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
Int.instIsCancelMulZero
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
mul
mul_isClassified πŸ“–mathematicalPythagoreanTriple
IsClassified
mulβ€”mul
ne_zero_of_coprime πŸ“–β€”PythagoreanTripleβ€”β€”eq
sq
one_ne_zero
Int.ne_zero_of_gcd
lt_add_of_pos_of_le
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
sq_pos_of_ne_zero
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
sq_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
lt_add_of_le_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Mathlib.Meta.NormNum.isNat_lt_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNat_mul
normalize πŸ“–β€”PythagoreanTripleβ€”β€”MulZeroClass.mul_zero
add_zero
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
zero
gcd_dvd
Int.exists_gcd_one'
Nat.cast_zero
Int.instCharZero
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
one_mul
mul_iff
mul_comm
zero πŸ“–mathematicalβ€”PythagoreanTripleβ€”MulZeroClass.zero_mul
zero_add

(root)

Definitions

NameCategoryTheorems
PythagoreanTriple πŸ“–MathDef
5 mathmath: PythagoreanTriple.mul_iff, PythagoreanTriple.classification, PythagoreanTriple.coprime_classification, PythagoreanTriple.zero, pythagoreanTriple_comm
circleEquivGen πŸ“–CompOp
2 mathmath: circleEquivGen_symm_apply, circleEquivGen_apply

Theorems

NameKindAssumesProvesValidatesDepends On
circleEquivGen_apply πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
circleEquivGen
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”β€”
circleEquivGen_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
circleEquivGen
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”β€”
pythagoreanTriple_comm πŸ“–mathematicalβ€”PythagoreanTripleβ€”add_comm
sq_ne_two_fin_zmod_four πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
Fintype.complete

---

← Back to Index