Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/RamificationInertia/Basic.lean

Statistics

MetricCount
DefinitionspiQuotientEquiv, piQuotientLinearEquiv, algebraQuotientOfRamificationIdxNeZero, algebraQuotientPowRamificationIdx, inertiaDeg, powQuotSuccInclusion, quotientRangePowQuotSuccInclusionEquiv, quotientToQuotientRangePowQuotSucc, quotientToQuotientRangePowQuotSuccAux, ramificationIdx
10
Theoremsfact_ramificationIdx_neZero, finiteDimensional_quotient_pow, finrank_pow_ramificationIdx, isPrime, isScalarTower, liesOver, ne_bot, piQuotientEquiv_map, piQuotientEquiv_mk, ramificationIdx_ne_zero, linearIndependent_of_nontrivial, span_eq_top, ramificationIdx_eq_factors_count, ramificationIdx_eq_multiplicity, ramificationIdx_eq_normalizedFactors_count, ramificationIdx_eq_one_iff, ramificationIdx_ne_zero, ramificationIdx_ne_zero_of_liesOver, algebraMap_quotient_of_ramificationIdx_neZero, algebraMap_quotient_pow_ramificationIdx, absNorm_eq_pow_inertiaDeg, absNorm_eq_pow_inertiaDeg', absNorm_eq_pow_inertiaDeg_of_liesOver, card_primesOverFinset_le_finrank, finrank_prime_pow_ramificationIdx, finrank_quotient_map, inertiaDeg_algebraMap, inertiaDeg_algebra_tower, inertiaDeg_bot, inertiaDeg_comap_eq, inertiaDeg_le_finrank, inertiaDeg_map_eq, inertiaDeg_ne_zero, inertiaDeg_of_subsingleton, inertiaDeg_pos, le_comap_of_ramificationIdx_ne_zero, le_comap_pow_ramificationIdx, le_pow_of_le_ramificationIdx, le_pow_ramificationIdx, powQuotSuccInclusion_apply_coe, powQuotSuccInclusion_injective, quotientToQuotientRangePowQuotSuccAux_mk, quotientToQuotientRangePowQuotSucc_injective, quotientToQuotientRangePowQuotSucc_mk, quotientToQuotientRangePowQuotSucc_surjective, ramificationIdx_algebra_tower, ramificationIdx_bot, ramificationIdx_bot', ramificationIdx_comap_eq, ramificationIdx_eq_find, ramificationIdx_eq_one_of_map_localization, ramificationIdx_eq_zero, ramificationIdx_le_finrank, ramificationIdx_lt, ramificationIdx_map_eq, ramificationIdx_map_self_eq_one, ramificationIdx_mul_inertiaDeg_of_isLocalRing, ramificationIdx_ne_one_iff, ramificationIdx_ne_zero, ramificationIdx_of_not_le, ramificationIdx_spec, ramificationIdx_tower, rank_pow_quot, rank_pow_quot_aux, rank_prime_pow_ramificationIdx, sum_ramification_inertia
66
Total76

Ideal

Definitions

NameCategoryTheorems
inertiaDeg πŸ“–CompOp
30 mathmath: IsCyclotomicExtension.Rat.inertiaDeg_eq_of_prime_pow, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply', inertiaDeg_comap_eq, inertiaDeg_algebraMap, absNorm_eq_pow_inertiaDeg', relNorm_eq_pow_of_isPrime_isGalois, absNorm_eq_pow_inertiaDeg_of_liesOver, IsLocalization.AtPrime.inertiaDeg_map_eq_inertiaDeg, sum_ramification_inertia, IsDedekindDomain.primesOverEquivPrimesOver_inertiagDeg_eq, inertiaDeg_eq_of_isGalois, IsCyclotomicExtension.Rat.inertiaDeg_span_zeta_sub_one, IsCyclotomicExtension.Rat.inertiaDeg_eq, IsCyclotomicExtension.Rat.inertiaDeg_span_zeta_sub_one', inertiaDeg_eq_of_isGaloisGroup, inertiaDeg_pos, inertiaDeg_of_subsingleton, ramificationIdx_mul_inertiaDeg_of_isLocalRing, Factors.finrank_pow_ramificationIdx, inertiaDeg_bot, inertiaDeg_algebra_tower, inertiaDegIn_eq_inertiaDeg, absNorm_eq_pow_inertiaDeg, inertiaDeg_le_finrank, IsCyclotomicExtension.Rat.inertiaDeg_of_not_dvd, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_not_dvd, inertiaDeg_map_eq, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_prime, relNorm_eq_pow_of_isMaximal
powQuotSuccInclusion πŸ“–CompOp
6 mathmath: powQuotSuccInclusion_apply_coe, quotientToQuotientRangePowQuotSucc_mk, quotientToQuotientRangePowQuotSucc_surjective, quotientToQuotientRangePowQuotSucc_injective, powQuotSuccInclusion_injective, quotientToQuotientRangePowQuotSuccAux_mk
quotientRangePowQuotSuccInclusionEquiv πŸ“–CompOpβ€”
quotientToQuotientRangePowQuotSucc πŸ“–CompOp
3 mathmath: quotientToQuotientRangePowQuotSucc_mk, quotientToQuotientRangePowQuotSucc_surjective, quotientToQuotientRangePowQuotSucc_injective
quotientToQuotientRangePowQuotSuccAux πŸ“–CompOp
1 mathmath: quotientToQuotientRangePowQuotSuccAux_mk
ramificationIdx πŸ“–CompOp
51 mathmath: NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', ramificationIdx_comap_eq, rank_prime_pow_ramificationIdx, ramificationIdx_le_finrank, ramificationIdx_eq_one_of_isUnramifiedAt, Factors.fact_ramificationIdx_neZero, IsCyclotomicExtension.Rat.ramificationIdx_span_zeta_sub_one', IsCyclotomicExtension.Rat.ramificationIdx_eq_of_prime_pow, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_prime, powQuotSuccInclusion_apply_coe, IsDedekindDomain.ramificationIdx_eq_normalizedFactors_count, sum_ramification_inertia, ramificationIdx_algebra_tower, ramificationIdx_bot, ramificationIdx_eq_find, quotientToQuotientRangePowQuotSucc_mk, finrank_prime_pow_ramificationIdx, le_pow_ramificationIdx, ramificationIdx_map_eq, ramificationIdx_spec, ramificationIdx_eq_one_of_map_localization, IsDedekindDomain.primesOverEquivPrimesOver_ramificationIdx_eq, ramificationIdx_tower, Algebra.isUnramifiedAt_iff_of_isDedekindDomain, Quotient.algebraMap_quotient_pow_ramificationIdx, ramificationIdxIn_eq_ramificationIdx, ramificationIdx_bot', IsDedekindDomain.ramificationIdx_eq_one_iff, ramificationIdx_eq_zero, ramificationIdx_mul_inertiaDeg_of_isLocalRing, Factors.finrank_pow_ramificationIdx, ramificationIdx_eq_of_isGalois, map_algebraMap_eq_finset_prod_pow, ramificationIdx_of_not_le, powQuotSuccInclusion_injective, IsCyclotomicExtension.Rat.ramificationIdx_of_not_dvd, IsDedekindDomain.ramificationIdx_eq_factors_count, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_not_dvd, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, Factors.finiteDimensional_quotient_pow, IsCyclotomicExtension.Rat.ramificationIdx_eq, ramificationIdx_lt, IsDedekindDomain.ramificationIdx_eq_multiplicity, quotientToQuotientRangePowQuotSuccAux_mk, Factors.piQuotientEquiv_mk, ramificationIdx_eq_of_isGaloisGroup, IsLocalization.AtPrime.ramificationIdx_map_eq_ramificationIdx, IsCyclotomicExtension.Rat.ramificationIdx_span_zeta_sub_one, ramificationIdx_map_self_eq_one, le_comap_pow_ramificationIdx, Factors.piQuotientEquiv_map

Theorems

NameKindAssumesProvesValidatesDepends On
absNorm_eq_pow_inertiaDeg πŸ“–mathematicalPrime
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Monoid.toNatPow
Nat.instMonoid
inertiaDeg
Int.instCommRing
span
Int.instSemiring
Set
Set.instSingletonSet
Ring.toIntAlgebra
CommRing.toRing
β€”IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
IsPrincipalIdealRing.isDedekindDomain
Int.instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
Int.instIsAddTorsionFree
absNorm_span_singleton
Algebra.norm_self
absNorm_eq_pow_inertiaDeg_of_liesOver
span_singleton_prime
Prime.ne_zero
absNorm_eq_pow_inertiaDeg' πŸ“–mathematicalNat.PrimeDFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Monoid.toNatPow
Nat.instMonoid
inertiaDeg
Int.instCommRing
span
Int.instSemiring
Set
Set.instSingletonSet
Ring.toIntAlgebra
CommRing.toRing
β€”absNorm_eq_pow_inertiaDeg
Nat.prime_iff_prime_int
absNorm_eq_pow_inertiaDeg_of_liesOver πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Monoid.toNatPow
Nat.instMonoid
inertiaDeg
β€”IsPrime.isMaximal
IsDedekindDomainDvr.ring_dimensionLEOne
IsDedekindDomain.toIsDomain
IsDedekindDomain.isDedekindDomainDvr
IsDomain.toNontrivial
Submodule.cardQuot_apply
inertiaDeg_algebraMap
Module.natCard_eq_pow_finrank
module_finite_of_liesOver
card_primesOverFinset_le_finrank πŸ“–mathematicalβ€”Finset.card
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
primesOverFinset
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”sum_ramification_inertia
Finset.card_eq_sum_ones
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mem_primesOverFinset_iff
IsDedekindDomain.toIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Right.one_le_mul
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
IsDedekindDomain.ramificationIdx_ne_zero_of_liesOver
inertiaDeg_ne_zero
finrank_prime_pow_ramificationIdx πŸ“–mathematicalβ€”Module.finrank
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
ramificationIdx
algebraMap
Quotient.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Algebra.toModule
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Quotient.algebraQuotientOfRamificationIdxNeZero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”IsScalarTower.right
rank_prime_pow_ramificationIdx
Module.finiteDimensional_iff_of_rank_eq_nsmul
Nat.cast_injective
Cardinal.instCharZero
Module.finrank_eq_rank'
Nat.cast_mul
nsmul_eq_mul
Module.finrank_of_infinite_dimensional
MulZeroClass.mul_zero
finrank_quotient_map πŸ“–mathematicalβ€”Module.finrank
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Quotient.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Algebra.toModule
Quotient.commSemiring
Quotient.algebraQuotientMapQuotient
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semifield.toCommSemiring
β€”Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
Quotient.isDomain
instIsTwoSided_1
IsMaximal.isPrime'
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Module.IsNoetherian.finite
QuotientMapQuotient.isNoetherian
isNoetherian_of_isNoetherianRing_of_finite
IsDedekindDomainDvr.toIsNoetherian
IsDedekindDomain.toIsDomain
IsDedekindDomain.isDedekindDomainDvr
Module.Projective.of_free
Module.Free.of_divisionRing
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Quotient.mk_surjective
IsScalarTower.right
LinearMap.IsScalarTower.compatibleSMul'
Quotient.isScalarTower
Module.Basis.linearIndependent
FinrankQuotientMap.linearIndependent_of_nontrivial
Quotient.tower_quotient_map_quotient
RingHom.instRingHomClass
Quotient.algebraMap_eq
mk_ker
IsMaximal.ne_top
IsFractionRing.injective
Set.range_comp
FinrankQuotientMap.span_eq_top
Algebra.IsAlgebraic.of_finite
IsDomain.toNontrivial
FaithfulSMul.to_isTorsionFree
IsFractionRing.instFaithfulSMul
IsDomain.toIsCancelMulZero
instIsDomain
top_le_iff
Module.Basis.mem_span
RingHomSurjective.ids
Submodule.mem_map
Submodule.map_span
Submodule.restrictScalars_span
Submodule.restrictScalars_mem
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Submodule.addSubmonoidClass
Submodule.mem_sup_left
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
Submodule.mem_sup_right
Submodule.Quotient.eq
Submodule.mkQ_apply
LinearMap.restrictScalars_apply
neg_sub
add_sub_cancel
Eq.ge
Module.finrank_eq_card_basis
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
inertiaDeg_algebraMap πŸ“–mathematicalβ€”inertiaDeg
Module.finrank
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Quotient.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Algebra.toModule
Quotient.commSemiring
Quotient.algebraOfLiesOver
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
inertiaDeg_of_subsingleton
Module.finrank_zero_of_subsingleton
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsTwoSided_1
inertiaDeg.eq_1
over_def
inertiaDeg_algebra_tower πŸ“–mathematicalβ€”inertiaDegβ€”over_def
LiesOver.over
LiesOver.trans
instIsTwoSided_1
Eq.le
Module.finrank_mul_finrank
IsScalarTower.of_algebraMap_eq
IsScalarTower.algebraMap_apply
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
inertiaDeg_bot πŸ“–mathematicalβ€”inertiaDeg
Bot.bot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Module.finrank
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”instIsTwoSided_1
inertiaDeg.eq_1
over_def
eq_bot_of_liesOver_bot
Algebra.finrank_eq_of_equiv_equiv
instIsTwoSidedBot
inertiaDeg_comap_eq πŸ“–mathematicalβ€”inertiaDeg
comap
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv.instFunLike
AlgHomClass.toRingHomClass
EquivLike.toFunLike
AlgEquiv.instEquivLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
β€”RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
comap_coe
comap_comap
AlgHom.algHomClass
AlgEquiv.toAlgHom_toRingHom
AlgHom.comp_algebraMap
comap_liesOver
inertiaDeg_algebraMap
LinearEquiv.finrank_eq
instIsTwoSided_1
inertiaDeg.eq_1
inertiaDeg_le_finrank πŸ“–mathematicalβ€”inertiaDeg
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”mem_primesOverFinset_iff
IsDedekindDomain.toIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
sum_ramification_inertia
Finset.add_sum_erase
le_trans
IsDedekindDomain.ramificationIdx_ne_zero_of_liesOver
inertiaDeg_map_eq πŸ“–mathematicalβ€”inertiaDeg
map
CommSemiring.toSemiring
CommRing.toCommSemiring
EquivLike.toFunLike
β€”AlgEquivClass.toRingEquivClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_comap_of_equiv
inertiaDeg_comap_eq
inertiaDeg_ne_zero πŸ“–β€”β€”β€”β€”inertiaDeg_pos
inertiaDeg_of_subsingleton πŸ“–mathematicalβ€”inertiaDegβ€”Quotient.subsingleton_iff
IsMaximal.ne_top
comap_top
instIsTwoSided_1
inertiaDeg_pos πŸ“–mathematicalβ€”inertiaDegβ€”Quotient.nontrivial_of_liesOver_of_isPrime
IsMaximal.isPrime'
LT.lt.trans_eq
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
module_finite_of_liesOver
Quotient.isDomain
instIsTwoSided_1
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
inertiaDeg_algebraMap
le_comap_of_ramificationIdx_ne_zero πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
map_le_iff_le_comap
LE.le.trans
IsScalarTower.right
le_pow_ramificationIdx
pow_le_self
le_comap_pow_ramificationIdx πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
Submodule.instPowNat
IsScalarTower.right
Algebra.id
ramificationIdx
β€”IsScalarTower.right
RingHom.instRingHomClass
map_le_iff_le_comap
le_pow_ramificationIdx
le_pow_of_le_ramificationIdx πŸ“–mathematicalramificationIdxIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”Mathlib.Tactic.Contrapose.contrapose₁
IsScalarTower.right
ramificationIdx_lt
le_pow_ramificationIdx πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
Submodule.instPowNat
IsScalarTower.right
Algebra.id
ramificationIdx
β€”le_pow_of_le_ramificationIdx
le_refl
powQuotSuccInclusion_apply_coe πŸ“–mathematicalβ€”HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instPowNat
Semiring.toModule
ramificationIdx
algebraMap
Quotient.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
map
RingHom
Quotient.ring
RingHom.instFunLike
DFunLike.coe
LinearMap
instHasQuotient_1
RingHom.id
IsScalarTower.right
Algebra.id
instIsTwoSided_1
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
Algebra.toModule
LinearMap.instFunLike
powQuotSuccInclusion
β€”IsScalarTower.right
instIsTwoSided_1
powQuotSuccInclusion_injective πŸ“–mathematicalβ€”HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
ramificationIdx
algebraMap
Quotient.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
DFunLike.coe
LinearMap
instHasQuotient_1
RingHom.id
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
Algebra.toModule
LinearMap.instFunLike
powQuotSuccInclusion
β€”IsScalarTower.right
instIsTwoSided_1
LinearMap.ker_eq_bot
LinearMap.ker_eq_bot'
powQuotSuccInclusion_apply_coe
quotientToQuotientRangePowQuotSuccAux_mk πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
quotientToQuotientRangePowQuotSuccAux
CommRing.toRing
Ring.toAddCommGroup
HasQuotient.Quotient
instHasQuotient_1
Ring.toSemiring
instHasQuotient
ramificationIdx
algebraMap
Quotient.semiring
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
Quotient.instRingQuotient
Submodule.addCommGroup
Submodule.Quotient.addCommGroup
Submodule.module'
Algebra.toSMul
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
Algebra.toModule
LinearMap.range
Submodule.addCommMonoid
RingHom.id
RingHomSurjective.ids
powQuotSuccInclusion
DFunLike.coe
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
mem_map_of_mem
mul_mem_right
β€”IsScalarTower.right
Quotient.map'_mk''
quotientToQuotientRangePowQuotSucc_injective πŸ“–mathematicalramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
HasQuotient.Quotient
instHasQuotient_1
Ring.toSemiring
CommRing.toRing
instHasQuotient
Quotient.semiring
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
Submodule
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
Algebra.toModule
Submodule.hasQuotient
Quotient.instRingQuotient
Submodule.addCommGroup
Submodule.Quotient.addCommGroup
Ring.toAddCommGroup
LinearMap.range
RingHom.id
RingHomSurjective.ids
powQuotSuccInclusion
DFunLike.coe
LinearMap
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
AddCommGroup.toAddCommMonoid
Quotient.algebraQuotientOfRamificationIdxNeZero
Submodule.Quotient.module
LinearMap.instFunLike
quotientToQuotientRangePowQuotSucc
β€”IsScalarTower.right
Quotient.inductionOn'
instIsTwoSided_1
RingHomSurjective.ids
pow_le_pow_right
mem_map_of_mem
mul_mem_right
Submodule.coe_sub
IsPrime.mem_pow_mul
Submodule.sub_mem_iff_right
sup_eq_left
mem_quotient_iff_mem_sup
mul_sub
Quotient.eq
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
powQuotSuccInclusion_apply_coe
quotientToQuotientRangePowQuotSucc_mk πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
DFunLike.coe
LinearMap
HasQuotient.Quotient
instHasQuotient_1
Quotient.semiring
RingHom.id
Ring.toSemiring
CommRing.toRing
instHasQuotient
ramificationIdx
algebraMap
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
Submodule
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
Algebra.toModule
Submodule.hasQuotient
Quotient.instRingQuotient
Submodule.addCommGroup
Submodule.Quotient.addCommGroup
Ring.toAddCommGroup
LinearMap.range
RingHomSurjective.ids
powQuotSuccInclusion
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
AddCommGroup.toAddCommMonoid
Quotient.algebraQuotientOfRamificationIdxNeZero
Submodule.Quotient.module
LinearMap.instFunLike
quotientToQuotientRangePowQuotSucc
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
mem_map_of_mem
mul_mem_right
β€”IsScalarTower.right
quotientToQuotientRangePowQuotSucc_surjective πŸ“–mathematicalramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
HasQuotient.Quotient
instHasQuotient_1
Ring.toSemiring
CommRing.toRing
instHasQuotient
Quotient.semiring
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
Submodule
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
Algebra.toModule
Submodule.hasQuotient
Quotient.instRingQuotient
Submodule.addCommGroup
Submodule.Quotient.addCommGroup
Ring.toAddCommGroup
LinearMap.range
RingHom.id
RingHomSurjective.ids
powQuotSuccInclusion
DFunLike.coe
LinearMap
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
AddCommGroup.toAddCommMonoid
Quotient.algebraQuotientOfRamificationIdxNeZero
Submodule.Quotient.module
LinearMap.instFunLike
quotientToQuotientRangePowQuotSucc
β€”IsScalarTower.right
instIsTwoSided_1
RingHomSurjective.ids
pow_le_pow_right
LT.lt.le
uniqueFactorizationMonoid
sup_eq_prod_inf_factors
zero_mem
span_singleton_eq_bot
pow_ne_zero
isReduced_of_noZeroDivisors
instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
UniqueFactorizationMonoid.normalizedFactors_pow
UniqueFactorizationMonoid.normalizedFactors_irreducible
Prime.irreducible
isCancelMulZero
prime_iff_isPrime
normalize_eq
Multiset.nsmul_singleton
Multiset.inter_replicate
Multiset.prod_replicate
count_normalizedFactors_eq
submodule_span_eq
Submodule.span_singleton_le_iff_mem
min_eq_left
sup_eq_left
mem_quotient_iff_mem_sup
Submodule.mem_sup
mem_span_singleton
mem_map_of_mem
mul_mem_right
Submodule.coe_sub
Submodule.neg_mem
powQuotSuccInclusion_apply_coe
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_add_cancel_left
map_neg
ramificationIdx_algebra_tower πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
algebraMap
ramificationIdxβ€”IsScalarTower.algebraMap_eq
ramificationIdx_tower
ramificationIdx_bot πŸ“–mathematicalβ€”ramificationIdx
Bot.bot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”LT.lt.not_ge
map_bot
RingHom.instRingHomClass
ramificationIdx_bot' πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
ramificationIdx
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”ramificationIdx_of_not_le
Iff.not
le_bot_iff
map_eq_bot_iff_of_injective
RingHom.instRingHomClass
ramificationIdx_comap_eq πŸ“–mathematicalβ€”ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
comap
AlgEquiv
AlgEquiv.instFunLike
AlgHomClass.toRingHomClass
EquivLike.toFunLike
AlgEquiv.instEquivLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
β€”AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Set.ext
RingHom.instRingHomClass
comap_coe
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
AlgEquivClass.toRingEquivClass
AlgEquiv.toRingEquiv_toRingHom
RingEquiv.symm_symm
map_comap_of_equiv
IsScalarTower.right
map_pow
comap_comap
AlgHom.algHomClass
AlgEquiv.toAlgHom_toRingHom
AlgHom.comp_algebraMap
ramificationIdx_eq_find πŸ“–mathematicalβ€”ramificationIdx
Nat.find
β€”IsScalarTower.right
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
Nat.sSup_def
ramificationIdx_eq_one_of_map_localization πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
algebraMap
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instPartialOrder
primeCompl
nonZeroDivisors
Semiring.toMonoidWithZero
Localization.AtPrime
OreLocalization.instSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
OreLocalization.instAlgebra
IsLocalRing.maximalIdeal
OreLocalization.instCommSemiring
Localization.AtPrime.isLocalRing
ramificationIdxβ€”Localization.AtPrime.isLocalRing
not_ne_iff
ramificationIdx_ne_one_iff
map_mono
Submodule.eq_bot_of_le_smul_of_le_jacobson_bot
IsNoetherian.noetherian
IsLocalization.instIsNoetherianRingLocalization
pow_two
IsScalarTower.right
IsScalarTower.algebraMap_eq
OreLocalization.instIsScalarTower
map_map
Localization.AtPrime.map_eq_maximalIdeal
map_pow
RingHom.instRingHomClass
IsLocalRing.maximalIdeal_le_jacobson
map_eq_bot_iff_of_injective
IsLocalization.injective
Localization.isLocalization
ramificationIdx_eq_zero πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
Submodule.instPowNat
IsScalarTower.right
Algebra.id
ramificationIdxβ€”IsScalarTower.right
Mathlib.Tactic.Push.not_forall_eq
ramificationIdx_le_finrank πŸ“–mathematicalβ€”ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”ramificationIdx_bot
Nat.instCanonicallyOrderedAdd
mem_primesOverFinset_iff
IsDedekindDomain.toIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
sum_ramification_inertia
Finset.add_sum_erase
le_trans
inertiaDeg_ne_zero
ramificationIdx_lt πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
Submodule.instPowNat
IsScalarTower.right
Algebra.id
ramificationIdxβ€”IsScalarTower.right
pow_zero
one_eq_top
le_of_not_gt
LE.le.trans
pow_le_pow_right
ramificationIdx_eq_find
Nat.find_min'
ramificationIdx_map_eq πŸ“–mathematicalβ€”ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
map
EquivLike.toFunLike
β€”AlgEquivClass.toRingEquivClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_comap_of_equiv
ramificationIdx_comap_eq
ramificationIdx_map_self_eq_one πŸ“–mathematicalβ€”ramificationIdx
map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”ramificationIdx_spec
IsScalarTower.right
pow_one
le_antisymm
pow_le_self
two_ne_zero
IsMulTorsionFree.pow_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
isCancelMulZero
UniqueFactorizationMonoid.instIsMulTorsionFree
uniqueFactorizationMonoid
Subsingleton.to_isMulTorsionFree
Unique.instSubsingleton
one_eq_top
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
ramificationIdx_mul_inertiaDeg_of_isLocalRing πŸ“–mathematicalβ€”ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
IsLocalRing.maximalIdeal
inertiaDeg
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”FaithfulSMul.of_field_isFractionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
sum_ramification_inertia
Finset.sum_congr
IsLocalRing.primesOverFinset_eq
IsDedekindDomain.toIsDomain
Finset.sum_singleton
ramificationIdx_ne_one_iff πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
β€”IsScalarTower.right
ramificationIdx_eq_zero
IsScalarTower.left
LE.le.trans
pow_le_pow_right
LT.lt.le
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
ramificationIdx_eq_find
Nat.find_spec
pow_one
Nat.find_min
ramificationIdx_ne_zero πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
Submodule.instPowNat
IsScalarTower.right
Algebra.id
β€”β€”IsScalarTower.right
ramificationIdx_spec
ramificationIdx_of_not_le πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
ramificationIdxβ€”ramificationIdx_spec
IsScalarTower.right
pow_zero
one_eq_top
zero_add
pow_one
ramificationIdx_spec πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
Submodule.instPowNat
IsScalarTower.right
Algebra.id
ramificationIdxβ€”IsScalarTower.right
le_of_not_gt
LE.le.trans
pow_le_pow_right
ramificationIdx_eq_find
le_antisymm
Nat.find_min'
LT.lt.not_ge
Nat.find_spec
ramificationIdx_tower πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
ramificationIdx
RingHom.comp
β€”ne_bot_of_map_ne_bot
RingHom.instRingHomClass
map_map
ne_bot_of_le_ne_bot
uniqueFactorizationMonoid
IsDedekindDomain.ramificationIdx_eq_normalizedFactors_count
IsScalarTower.right
eq_prime_pow_mul_coprime
Ring.DimensionLEOne.maximalOfPrime
IsDedekindDomainDvr.ring_dimensionLEOne
IsDedekindDomain.toIsDomain
IsDedekindDomain.isDedekindDomainDvr
map_sup
map_top
IsPrime.ne_top
eq_top_iff_one
IsScalarTower.left
map_mul
map_pow
UniqueFactorizationMonoid.normalizedFactors_mul
pow_ne_zero
isReduced_of_noZeroDivisors
instNoZeroDivisors
IsDomain.to_noZeroDivisors
Eq.trans_le
sup_of_le_left
Multiset.count_add
UniqueFactorizationMonoid.normalizedFactors_pow
Multiset.count_nsmul
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
sup_le
le_of_dvd
UniqueFactorizationMonoid.dvd_of_mem_normalizedFactors
Multiset.count_ne_zero
rank_pow_quot πŸ“–mathematicalramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Module.rank
HasQuotient.Quotient
Ideal
instHasQuotient_1
Ring.toSemiring
CommRing.toRing
instHasQuotient
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Quotient.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
Algebra.toModule
Cardinal
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Cardinal.commSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Quotient.algebraQuotientOfRamificationIdxNeZero
β€”IsScalarTower.right
instIsTwoSided_1
rank_pow_quot_aux
succ_nsmul'
zero_nsmul
map_quotient_self
rank_bot
IsLocalRing.toNontrivial
Field.instIsLocalRing
rank_pow_quot_aux πŸ“–mathematicalramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Module.rank
HasQuotient.Quotient
Ideal
instHasQuotient_1
Ring.toSemiring
CommRing.toRing
instHasQuotient
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Quotient.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
map
RingHom
Quotient.ring
instIsTwoSided_1
RingHom.instFunLike
Submodule.addCommMonoid
Submodule.module'
Algebra.toSMul
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
Algebra.toModule
Cardinal
Cardinal.instAdd
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Quotient.algebraQuotientOfRamificationIdxNeZero
β€”IsScalarTower.right
instIsTwoSided_1
RingHomSurjective.ids
rank_range_of_injective
powQuotSuccInclusion_injective
LinearEquiv.rank_eq
RingHomInvPair.ids
Submodule.rank_quotient_add_rank
IsDomain.hasRankNullity
Quotient.isDomain
IsMaximal.isPrime'
rank_prime_pow_ramificationIdx πŸ“–mathematicalβ€”Module.rank
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
ramificationIdx
algebraMap
Quotient.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Algebra.toModule
Quotient.commSemiring
Quotient.algebraQuotientPowRamificationIdx
Cardinal
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Cardinal.commSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Quotient.algebraQuotientOfRamificationIdxNeZero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”IsScalarTower.right
instIsTwoSided_1
rank_pow_quot
rank_top
map_top
RingHom.instRingHomClass
one_eq_top
pow_zero
sum_ramification_inertia πŸ“–mathematicalβ€”Finset.sum
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Nat.instAddCommMonoid
primesOverFinset
ramificationIdx
algebraMap
inertiaDeg
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”uniqueFactorizationMonoid
IsScalarTower.right
Finset.sum_attach
Finset.sum_congr
Factors.finrank_pow_ramificationIdx
Module.finrank_pi_fintype
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
Quotient.isDomain
instIsTwoSided_1
IsMaximal.isPrime'
Factors.finiteDimensional_quotient_pow
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
LinearEquiv.finrank_eq
RingHomInvPair.ids
RingHom.instRingHomClass
map_eq_bot_iff_le_ker
RingHom.injective_iff_ker_eq_bot
algebraMap_injective_of_field_isFractionRing
le_bot_iff
finrank_quotient_map
IsDedekindDomain.toIsDomain

Ideal.Factors

Definitions

NameCategoryTheorems
piQuotientEquiv πŸ“–CompOp
2 mathmath: piQuotientEquiv_mk, piQuotientEquiv_map
piQuotientLinearEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
fact_ramificationIdx_neZero πŸ“–mathematicalβ€”MulZeroClass.toZero
Nat.instMulZeroClass
Ideal.ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal
Finset
SetLike.instMembership
Finset.instSetLike
Multiset.toFinset
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Ideal.uniqueFactorizationMonoid
ramificationIdx_ne_zero
finiteDimensional_quotient_pow πŸ“–mathematicalβ€”FiniteDimensional
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Finset
SetLike.instMembership
Finset.instSetLike
Multiset.toFinset
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Ideal.ramificationIdx
Field.toDivisionRing
Ideal.Quotient.field
Submodule.Quotient.addCommGroup
CommRing.toRing
Ring.toAddCommGroup
Algebra.toModule
Ideal.Quotient.commSemiring
Ideal.Quotient.semiring
Ideal.Quotient.algebraQuotientPowRamificationIdx
β€”Ideal.uniqueFactorizationMonoid
FiniteDimensional.of_finrank_pos
IsScalarTower.right
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
finrank_pow_ramificationIdx
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
ramificationIdx_ne_zero
LT.lt.ne'
Ideal.inertiaDeg_pos
liesOver
finrank_pow_ramificationIdx πŸ“–mathematicalβ€”Module.finrank
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Finset
SetLike.instMembership
Finset.instSetLike
Multiset.toFinset
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Ideal.ramificationIdx
Ideal.Quotient.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Algebra.toModule
Ideal.Quotient.commSemiring
Ideal.Quotient.algebraQuotientPowRamificationIdx
Ideal.inertiaDeg
β€”Ideal.uniqueFactorizationMonoid
IsScalarTower.right
fact_ramificationIdx_neZero
Ideal.finrank_prime_pow_ramificationIdx
ne_bot
isPrime
liesOver
Ideal.inertiaDeg_algebraMap
isPrime πŸ“–mathematicalβ€”Ideal.IsPrime
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Finset
SetLike.instMembership
Finset.instSetLike
Multiset.toFinset
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”Ideal.uniqueFactorizationMonoid
Ideal.isPrime_of_prime
UniqueFactorizationMonoid.prime_of_factor
Multiset.mem_toFinset
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Finset
SetLike.instMembership
Finset.instSetLike
Multiset.toFinset
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Submodule.Quotient.instSMul
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
Ideal.Quotient.commSemiring
Ideal.Quotient.semiring
Ideal.Quotient.algebraQuotientOfRamificationIdxNeZero
fact_ramificationIdx_neZero
Submodule.Quotient.instSMul'
IsScalarTower.right
β€”Ideal.uniqueFactorizationMonoid
IsScalarTower.of_algebraMap_eq'
fact_ramificationIdx_neZero
liesOver πŸ“–mathematicalβ€”Ideal.LiesOver
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal
Finset
SetLike.instMembership
Finset.instSetLike
Multiset.toFinset
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”Ideal.uniqueFactorizationMonoid
RingHom.instRingHomClass
Ideal.comap_eq_of_scalar_tower_quotient
fact_ramificationIdx_neZero
isScalarTower
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
Ideal.instIsTwoSided_1
Ideal.Quotient.isDomain
isPrime
ne_bot πŸ“–β€”β€”β€”β€”Ideal.uniqueFactorizationMonoid
Prime.ne_zero
UniqueFactorizationMonoid.prime_of_factor
Multiset.mem_toFinset
piQuotientEquiv_map πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Pi.instMul
Finset
SetLike.instMembership
Finset.instSetLike
Multiset.toFinset
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.ramificationIdx
Distrib.toAdd
Pi.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
piQuotientEquiv
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
β€”Ideal.uniqueFactorizationMonoid
IsScalarTower.right
piQuotientEquiv_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Pi.instMul
Finset
SetLike.instMembership
Finset.instSetLike
Multiset.toFinset
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.ramificationIdx
Distrib.toAdd
Pi.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
piQuotientEquiv
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
β€”Ideal.uniqueFactorizationMonoid
IsScalarTower.right
Ideal.instIsTwoSided_1
ramificationIdx_ne_zero πŸ“–β€”β€”β€”β€”Ideal.uniqueFactorizationMonoid
Ideal.IsDedekindDomain.ramificationIdx_ne_zero
UniqueFactorizationMonoid.ne_zero_of_mem_factors
Multiset.mem_toFinset
isPrime
Ideal.le_of_dvd
UniqueFactorizationMonoid.dvd_of_mem_factors

Ideal.FinrankQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
linearIndependent_of_nontrivial πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
LinearIndependent
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”RingHom.instRingHomClass
Mathlib.Tactic.Contrapose.contrapose₁
Ideal.exist_integer_multiples_notMem
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
smul_zero
Finset.smul_sum
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
IsScalarTower.algebraMap_smul
smul_assoc
IsScalarTower.left
smul_eq_mul
LinearMap.map_eq_zero_iff
map_zero
AddMonoidHomClass.toZeroHomClass
span_eq_top πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Submodule.span
Submodule.restrictScalars
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Algebra.toSMul
IsScalarTower.right
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
Top.top
Submodule.instTop
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semifield.toCommSemiring
Set.image
DFunLike.coe
β€”IsScalarTower.right
IsScalarTower.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
Module.Finite.exists_fin
Module.Finite.quotient
Submodule.Quotient.isScalarTower
IsScalarTower.left
RingHomSurjective.ids
Submodule.map_smul''
Submodule.map_top
Submodule.range_mkQ
Ideal.smul_top_eq_map
Submodule.map_mkQ_eq_top
Submodule.mem_ideal_smul_span_iff_exists_sum
Ideal.instIsTwoSided_1
Submodule.mem_top
Finsupp.sum_fintype
zero_smul
Finset.sum_congr
sub_smul
ite_smul
one_smul
Finset.sum_sub_distrib
Finset.sum_ite_eq
sub_self
Matrix.adjugate_mul
mul_ite
mul_one
MulZeroClass.mul_zero
Finset.sum_smul
Finset.smul_sum
smul_smul
Finset.sum_comm
Finset.sum_eq_zero
smul_zero
Submodule.mem_span_singleton
Submodule.restrictScalars_mem
smul_eq_mul
mul_comm
Algebra.smul_def
Submodule.Quotient.mk_eq_zero
Submodule.Quotient.mk_smul
SMulCommClass.smul_comm
Submodule.Quotient.smulCommClass
smulCommClass_self
Finset.sum_const_zero
top_le_iff
Submodule.restrictScalars_eq_top_iff
Ideal.span_singleton_eq_top
map_ne_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ne_zero_of_map
Ideal.Quotient.nontrivial_iff
RingHom.map_det
Matrix.ext
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.mapMatrix_apply
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
Ideal.Quotient.eq_zero_iff_mem
zero_sub
Matrix.neg_apply
Matrix.det_neg
Fintype.card_fin
Matrix.det_one
IsUnit.ne_zero
IsUnit.pow
IsUnit.neg
isUnit_one
IsFractionRing.ideal_span_singleton_map_subset
IsScalarTower.algebraMap_apply

Ideal.IsDedekindDomain

Theorems

NameKindAssumesProvesValidatesDepends On
ramificationIdx_eq_factors_count πŸ“–mathematicalβ€”Ideal.ramificationIdx
Multiset.count
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
UniqueFactorizationMonoid.factors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.uniqueFactorizationMonoid
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Ideal.uniqueFactorizationMonoid
ramificationIdx_eq_normalizedFactors_count
Unique.instSubsingleton
UniqueFactorizationMonoid.factors_eq_normalizedFactors
ramificationIdx_eq_multiplicity πŸ“–mathematicalβ€”Ideal.ramificationIdx
multiplicity
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Ideal.zero_eq_bot
multiplicity_zero_eq_zero_of_ne_zero
Ideal.ramificationIdx_of_not_le
le_bot_iff
multiplicity_eq_of_emultiplicity_eq_some
Ideal.uniqueFactorizationMonoid
ramificationIdx_eq_normalizedFactors_count
Unique.instSubsingleton
normalize_eq
UniqueFactorizationMonoid.emultiplicity_eq_count_normalizedFactors
irreducible_iff_prime
Ideal.isCancelMulZero
UniqueFactorizationMonoid.instDecompositionMonoid
Ideal.prime_of_isPrime
ramificationIdx_eq_normalizedFactors_count πŸ“–mathematicalβ€”Ideal.ramificationIdx
Multiset.count
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
UniqueFactorizationMonoid.normalizedFactors
CommSemiring.toCommMonoidWithZero
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Ideal.normalizationMonoid
Ideal.uniqueFactorizationMonoid
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”Prime.irreducible
Ideal.isCancelMulZero
Ideal.prime_of_isPrime
Ideal.ramificationIdx_spec
Ideal.uniqueFactorizationMonoid
Ideal.le_of_dvd
IsScalarTower.right
UniqueFactorizationMonoid.dvd_iff_normalizedFactors_le_normalizedFactors
pow_ne_zero
isReduced_of_noZeroDivisors
Ideal.instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
UniqueFactorizationMonoid.normalizedFactors_pow
UniqueFactorizationMonoid.normalizedFactors_irreducible
normalize_eq
Multiset.nsmul_singleton
Multiset.le_count_iff_replicate_le
le_refl
Ideal.dvd_iff_le
LT.lt.not_ge
ramificationIdx_eq_one_iff πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
Ideal.ramificationIdx
Localization.AtPrime
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
OreLocalization.instAlgebra
IsLocalRing.maximalIdeal
OreLocalization.instCommSemiring
Localization.AtPrime.isLocalRing
β€”Localization.AtPrime.isLocalRing
not_ne_iff
Ideal.ramificationIdx_ne_one_iff
pow_two
IsScalarTower.right
Ideal.dvd_iff_le
Eq.trans_le
Ideal.mul_mono_right
IsScalarTower.algebraMap_eq
OreLocalization.instIsScalarTower
Ideal.map_map
IsScalarTower.left
Ideal.map_mul
RingHom.instRingHomClass
Localization.AtPrime.map_eq_maximalIdeal
IsLocalization.map_algebraMap_ne_top_iff_disjoint
Localization.isLocalization
instIsConcreteLE
Ideal.mul_top
Ideal.instIsTwoSided_1
Ideal.ramificationIdx_eq_one_of_map_localization
IsDedekindDomainDvr.toIsNoetherian
IsDedekindDomain.toIsDomain
IsDedekindDomain.isDedekindDomainDvr
Ideal.primeCompl_le_nonZeroDivisors
IsDomain.to_noZeroDivisors
ramificationIdx_ne_zero πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
β€”β€”le_bot_iff
Prime.irreducible
Ideal.isCancelMulZero
Ideal.prime_of_isPrime
Ideal.uniqueFactorizationMonoid
ramificationIdx_eq_normalizedFactors_count
UniqueFactorizationMonoid.exists_mem_normalizedFactors_of_dvd
IsScalarTower.right
Ideal.dvd_iff_le
Multiset.count_ne_zero
associated_iff_eq
Unique.instSubsingleton
ramificationIdx_ne_zero_of_liesOver πŸ“–β€”β€”β€”β€”ramificationIdx_ne_zero
Ideal.map_ne_bot_of_ne_bot
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Ideal.map_le_iff_le_comap
le_of_eq
Ideal.liesOver_iff

Ideal.Quotient

Definitions

NameCategoryTheorems
algebraQuotientOfRamificationIdxNeZero πŸ“–CompOp
9 mathmath: Ideal.rank_prime_pow_ramificationIdx, algebraMap_quotient_of_ramificationIdx_neZero, Ideal.Factors.isScalarTower, Ideal.quotientToQuotientRangePowQuotSucc_mk, Ideal.finrank_prime_pow_ramificationIdx, Ideal.quotientToQuotientRangePowQuotSucc_surjective, Ideal.quotientToQuotientRangePowQuotSucc_injective, Ideal.rank_pow_quot_aux, Ideal.rank_pow_quot
algebraQuotientPowRamificationIdx πŸ“–CompOp
13 mathmath: Ideal.rank_prime_pow_ramificationIdx, Ideal.powQuotSuccInclusion_apply_coe, Ideal.quotientToQuotientRangePowQuotSucc_mk, Ideal.finrank_prime_pow_ramificationIdx, Ideal.quotientToQuotientRangePowQuotSucc_surjective, algebraMap_quotient_pow_ramificationIdx, Ideal.quotientToQuotientRangePowQuotSucc_injective, Ideal.Factors.finrank_pow_ramificationIdx, Ideal.rank_pow_quot_aux, Ideal.rank_pow_quot, Ideal.powQuotSuccInclusion_injective, Ideal.Factors.finiteDimensional_quotient_pow, Ideal.quotientToQuotientRangePowQuotSuccAux_mk

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_quotient_of_ramificationIdx_neZero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Semiring.toNonAssocSemiring
commSemiring
semiring
RingHom.instFunLike
algebraMap
algebraQuotientOfRamificationIdxNeZero
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
ring
Ideal.instIsTwoSided_1
β€”Ideal.instIsTwoSided_1
algebraMap_quotient_pow_ramificationIdx πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Ideal.ramificationIdx
algebraMap
Semiring.toNonAssocSemiring
commSemiring
semiring
RingHom.instFunLike
algebraQuotientPowRamificationIdx
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
ring
Ideal.instIsTwoSided_1
β€”IsScalarTower.right
Ideal.instIsTwoSided_1

---

← Back to Index