π Source: Mathlib/NumberTheory/RamificationInertia/Galois.lean
inertiaDegIn
instMulActionAlgEquivElemPrimesOver
instMulActionElemPrimesOver
ramificationIdxIn
card_inertia_eq_ramificationIdxIn
card_stabilizer_eq
card_stabilizer_eq_card_inertia_mul_finrank
coe_smul_primesOver
coe_smul_primesOver_eq_map_galRestrict
coe_smul_primesOver_mk
coe_smul_primesOver_mk_eq_map_galRestrict
exists_comap_galRestrict_eq
exists_map_eq_of_isGalois
exists_smul_eq_of_isGaloisGroup
inertiaDegIn_eq_inertiaDeg
inertiaDegIn_mul_inertiaDegIn
inertiaDegIn_ne_zero
inertiaDeg_eq_of_isGalois
inertiaDeg_eq_of_isGaloisGroup
isPretransitive_of_isGalois
isPretransitive_of_isGaloisGroup
ncard_primesOver_mul_card_inertia_mul_finrank
ncard_primesOver_mul_ncard_primesOver
ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn
ramificationIdxIn_eq_ramificationIdx
ramificationIdxIn_mul_ramificationIdxIn
ramificationIdxIn_ne_zero
ramificationIdx_eq_of_isGalois
ramificationIdx_eq_of_isGaloisGroup
IsCyclotomicExtension.Rat.inertiaDegIn_of_not_dvd
IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime_pow
IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_not_dvd
IsCyclotomicExtension.Rat.inertiaDegIn_eq
IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime
IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime
IsCyclotomicExtension.Rat.ramificationIdxIn_eq
IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_not_dvd
IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime_pow
IsCyclotomicExtension.Rat.ramificationIdxIn_of_not_dvd
IsCyclotomicExtension.Rat.ramificationIdxIn_of_prime
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
inertia
CommRing.toRing
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MulSemiringAction.toDistribMulAction
IsPrime.isMaximal
IsDedekindDomainDvr.ring_dimensionLEOne
IsDedekindDomain.toIsDomain
IsDedekindDomain.isDedekindDomainDvr
IsPrime.under
IsMaximal.isPrime'
over_def
mul_right_injectiveβ
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
primesOver_ncard_ne_zero
Algebra.IsIntegral.of_finite
mul_left_injectiveβ
IsCancelMulZero.toIsRightCancelMulZero
MulZeroClass.mul_zero
One.instNonempty
Finite.not_infinite
mul_assoc
inertiaDeg_algebraMap
MulAction.stabilizer
Ideal
Submodule.instAddCommMonoidWithOne
Semiring.toModule
pointwiseDistribMulAction
Module.finrank
HasQuotient.Quotient
instHasQuotient_1
Quotient.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Algebra.toModule
Quotient.commSemiring
Quotient.algebraOfLiesOver
Quotient.normal
IsGaloisGroup.isInvariant
Quotient.finite_of_isInvariant
IsGaloisGroup.commutes
Nat.card_congr
instNormalSubtypeMemSubgroupStabilizerSubgroupOfInertia
IsGalois.card_aut_eq_finrank
Subgroup.card_mul_index
inertia_le_stabilizer
Set
Set.instMembership
primesOver
Set.Elem
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
map
AlgEquiv.instFunLike
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrict
Algebra.IsAlgebraic.of_finite
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
DivisionRing.toRing
Field.toDivisionRing
comap
Algebra.IsSeparable.isAlgebraic
IsGalois.to_isSeparable
AlgHomClass.toRingHomClass
AlgEquiv.instEquivLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
MulEquiv.isDomain
instIsDomainSubtypeMemSubalgebraIntegralClosure
instIsDomain
integralClosure.isIntegralClosure
IsScalarTower.subalgebra'
IsScalarTower.right
IsIntegralClosure.isDedekindDomain
IsIntegralClosure.finite
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomainDvr.toIsNoetherian
IsIntegralClosure.isFractionRing_of_finite_extension
IsGaloisGroup.of_isFractionRing
instSMulDistribClassAlgEquiv
IsGaloisGroup.of_isGalois
Finite.algEquiv
Finite.algHom
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
comap_map_of_bijective
AlgEquiv.bijective
Algebra.IsInvariant.exists_smul_of_under_eq
inertiaDeg
inertiaDegIn.eq_1
nonempty_primesOver
IsDomain.toNontrivial
LiesOver.trans
inertiaDeg_algebra_tower
primesOver.isPrime
primesOver.liesOver
inertiaDeg_ne_zero
inertiaDeg_map_eq
MulAction.IsPretransitive
Ring.toSemiring
Set.ncard
Algebra.IsInvariant.orbit_eq_primesOver
Nat.card_prod
ne_bot_of_liesOver_of_ne_bot
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
map_ne_bot_of_ne_bot
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsGaloisGroup.card_eq_finrank
IsGaloisGroup.toFractionRing
Module.finrank_mul_finrank
FractionRing.instIsScalarTower_1
FractionRing.instIsScalarTower
OreLocalization.instIsScalarTower
commRing_strongRankCondition
FractionRing.instNontrivial
IsDomain.to_noZeroDivisors
instFiniteDimensionalFractionRingOfFinite
smul_eq_mul
coe_primesOverFinset
Set.ncard_coe_finset
Finset.sum_const
sum_ramification_inertia
Localization.isLocalization
IsScalarTower.left
Finset.sum_congr
Finset.mem_coe
ramificationIdx
algebraMap
ramificationIdxIn.eq_1
ramificationIdx_algebra_tower
map_comap_le
Algebra.IsInvariant.isIntegral
IsDedekindDomain.ramificationIdx_ne_zero_of_liesOver
ramificationIdx_map_eq
---
β Back to Index