Documentation Verification Report

Galois

πŸ“ Source: Mathlib/NumberTheory/RamificationInertia/Galois.lean

Statistics

MetricCount
DefinitionsinertiaDegIn, instMulActionAlgEquivElemPrimesOver, instMulActionElemPrimesOver, ramificationIdxIn
4
Theoremscard_inertia_eq_ramificationIdxIn, card_stabilizer_eq, card_stabilizer_eq_card_inertia_mul_finrank, coe_smul_primesOver, coe_smul_primesOver_eq_map_galRestrict, coe_smul_primesOver_mk, coe_smul_primesOver_mk_eq_map_galRestrict, exists_comap_galRestrict_eq, exists_map_eq_of_isGalois, exists_smul_eq_of_isGaloisGroup, inertiaDegIn_eq_inertiaDeg, inertiaDegIn_mul_inertiaDegIn, inertiaDegIn_ne_zero, inertiaDeg_eq_of_isGalois, inertiaDeg_eq_of_isGaloisGroup, isPretransitive_of_isGalois, isPretransitive_of_isGaloisGroup, ncard_primesOver_mul_card_inertia_mul_finrank, ncard_primesOver_mul_ncard_primesOver, ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn, ramificationIdxIn_eq_ramificationIdx, ramificationIdxIn_mul_ramificationIdxIn, ramificationIdxIn_ne_zero, ramificationIdx_eq_of_isGalois, ramificationIdx_eq_of_isGaloisGroup
25
Total29

Ideal

Definitions

NameCategoryTheorems
inertiaDegIn πŸ“–CompOp
9 mathmath: IsCyclotomicExtension.Rat.inertiaDegIn_of_not_dvd, card_stabilizer_eq, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime_pow, ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn, inertiaDegIn_mul_inertiaDegIn, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_not_dvd, IsCyclotomicExtension.Rat.inertiaDegIn_eq, inertiaDegIn_eq_inertiaDeg, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime
instMulActionAlgEquivElemPrimesOver πŸ“–CompOp
2 mathmath: coe_smul_primesOver_mk_eq_map_galRestrict, coe_smul_primesOver_eq_map_galRestrict
instMulActionElemPrimesOver πŸ“–CompOp
4 mathmath: isPretransitive_of_isGalois, coe_smul_primesOver_mk, isPretransitive_of_isGaloisGroup, coe_smul_primesOver
ramificationIdxIn πŸ“–CompOp
11 mathmath: IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime, IsCyclotomicExtension.Rat.ramificationIdxIn_eq, card_stabilizer_eq, ramificationIdxIn_mul_ramificationIdxIn, ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn, ramificationIdxIn_eq_ramificationIdx, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_not_dvd, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime_pow, card_inertia_eq_ramificationIdxIn, IsCyclotomicExtension.Rat.ramificationIdxIn_of_not_dvd, IsCyclotomicExtension.Rat.ramificationIdxIn_of_prime

Theorems

NameKindAssumesProvesValidatesDepends On
card_inertia_eq_ramificationIdxIn πŸ“–mathematicalβ€”Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
inertia
CommRing.toRing
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MulSemiringAction.toDistribMulAction
ramificationIdxIn
β€”IsPrime.isMaximal
IsDedekindDomainDvr.ring_dimensionLEOne
IsDedekindDomain.toIsDomain
IsDedekindDomain.isDedekindDomainDvr
IsPrime.under
IsMaximal.isPrime'
over_def
ncard_primesOver_mul_card_inertia_mul_finrank
mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
primesOver_ncard_ne_zero
Algebra.IsIntegral.of_finite
mul_left_injectiveβ‚€
IsCancelMulZero.toIsRightCancelMulZero
MulZeroClass.mul_zero
One.instNonempty
Finite.not_infinite
mul_assoc
inertiaDeg_algebraMap
inertiaDegIn_eq_inertiaDeg
ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn
card_stabilizer_eq πŸ“–mathematicalβ€”Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
pointwiseDistribMulAction
ramificationIdxIn
inertiaDegIn
β€”IsPrime.isMaximal
IsDedekindDomainDvr.ring_dimensionLEOne
IsDedekindDomain.toIsDomain
IsDedekindDomain.isDedekindDomainDvr
IsPrime.under
IsMaximal.isPrime'
over_def
card_stabilizer_eq_card_inertia_mul_finrank
card_inertia_eq_ramificationIdxIn
inertiaDegIn_eq_inertiaDeg
inertiaDeg_algebraMap
card_stabilizer_eq_card_inertia_mul_finrank πŸ“–mathematicalβ€”Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
pointwiseDistribMulAction
inertia
CommRing.toRing
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Module.finrank
HasQuotient.Quotient
instHasQuotient_1
Quotient.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Algebra.toModule
Quotient.commSemiring
Quotient.algebraOfLiesOver
β€”Quotient.normal
IsGaloisGroup.isInvariant
Quotient.finite_of_isInvariant
IsGaloisGroup.commutes
Nat.card_congr
instNormalSubtypeMemSubgroupStabilizerSubgroupOfInertia
IsMaximal.isPrime'
IsGalois.card_aut_eq_finrank
Subgroup.card_mul_index
inertia_le_stabilizer
coe_smul_primesOver πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
primesOver
Set.Elem
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemPrimesOver
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
pointwiseDistribMulAction
β€”β€”
coe_smul_primesOver_eq_map_galRestrict πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
primesOver
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Set.Elem
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquivElemPrimesOver
map
AlgEquiv.instFunLike
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrict
Algebra.IsAlgebraic.of_finite
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
DivisionRing.toRing
Field.toDivisionRing
β€”β€”
coe_smul_primesOver_mk πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
primesOver
Set.Elem
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemPrimesOver
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
pointwiseDistribMulAction
β€”β€”
coe_smul_primesOver_mk_eq_map_galRestrict πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
primesOver
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Set.Elem
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MulAction.toSemigroupAction
instMulActionAlgEquivElemPrimesOver
map
AlgEquiv.instFunLike
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrict
Algebra.IsAlgebraic.of_finite
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
DivisionRing.toRing
Field.toDivisionRing
β€”β€”
exists_comap_galRestrict_eq πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
primesOver
comap
AlgEquiv
AlgEquiv.instFunLike
DFunLike.coe
MulEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrict
Algebra.IsSeparable.isAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsGalois.to_isSeparable
AlgHomClass.toRingHomClass
AlgEquiv.instEquivLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
β€”MulEquiv.isDomain
instIsDomainSubtypeMemSubalgebraIntegralClosure
instIsDomain
integralClosure.isIntegralClosure
IsScalarTower.subalgebra'
IsScalarTower.right
IsIntegralClosure.isDedekindDomain
IsDedekindDomain.toIsDomain
IsGalois.to_isSeparable
IsIntegralClosure.finite
IsDedekindDomainDvr.isIntegrallyClosed
IsDedekindDomain.isDedekindDomainDvr
IsDedekindDomainDvr.toIsNoetherian
IsIntegralClosure.isFractionRing_of_finite_extension
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsGaloisGroup.of_isFractionRing
instSMulDistribClassAlgEquiv
IsGaloisGroup.of_isGalois
Algebra.IsIntegral.of_finite
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
exists_smul_eq_of_isGaloisGroup
Finite.algEquiv
Finite.algHom
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
comap_map_of_bijective
AlgEquiv.bijective
exists_map_eq_of_isGalois πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
pointwiseDistribMulAction
β€”exists_smul_eq_of_isGaloisGroup
exists_smul_eq_of_isGaloisGroup πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
pointwiseDistribMulAction
β€”Algebra.IsInvariant.exists_smul_of_under_eq
IsGaloisGroup.isInvariant
IsGaloisGroup.commutes
over_def
inertiaDegIn_eq_inertiaDeg πŸ“–mathematicalβ€”inertiaDegIn
inertiaDeg
β€”inertiaDegIn.eq_1
inertiaDeg_eq_of_isGaloisGroup
inertiaDegIn_mul_inertiaDegIn πŸ“–mathematicalβ€”inertiaDegInβ€”nonempty_primesOver
IsDomain.toNontrivial
Algebra.IsIntegral.of_finite
LiesOver.trans
inertiaDegIn_eq_inertiaDeg
inertiaDeg_algebra_tower
inertiaDegIn_ne_zero πŸ“–β€”β€”β€”β€”nonempty_primesOver
Algebra.IsIntegral.of_finite
IsMaximal.isPrime'
inertiaDegIn_eq_inertiaDeg
primesOver.isPrime
primesOver.liesOver
inertiaDeg_ne_zero
inertiaDeg_eq_of_isGalois πŸ“–mathematicalβ€”inertiaDegβ€”inertiaDeg_eq_of_isGaloisGroup
inertiaDeg_eq_of_isGaloisGroup πŸ“–mathematicalβ€”inertiaDegβ€”exists_smul_eq_of_isGaloisGroup
IsGaloisGroup.commutes
inertiaDeg_map_eq
AlgEquiv.instAlgEquivClass
isPretransitive_of_isGalois πŸ“–mathematicalβ€”MulAction.IsPretransitive
Set.Elem
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
primesOver
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemPrimesOver
IsGaloisGroup.commutes
Ring.toSemiring
CommRing.toRing
β€”isPretransitive_of_isGaloisGroup
isPretransitive_of_isGaloisGroup πŸ“–mathematicalβ€”MulAction.IsPretransitive
Set.Elem
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
primesOver
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionElemPrimesOver
IsGaloisGroup.commutes
Ring.toSemiring
CommRing.toRing
β€”IsGaloisGroup.commutes
exists_smul_eq_of_isGaloisGroup
ncard_primesOver_mul_card_inertia_mul_finrank πŸ“–mathematicalβ€”Set.ncard
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
primesOver
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
inertia
CommRing.toRing
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Module.finrank
HasQuotient.Quotient
instHasQuotient_1
Quotient.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Quotient.commRing
Algebra.toModule
Quotient.commSemiring
Quotient.algebraOfLiesOver
β€”mul_assoc
card_stabilizer_eq_card_inertia_mul_finrank
Algebra.IsInvariant.orbit_eq_primesOver
IsGaloisGroup.isInvariant
IsGaloisGroup.commutes
IsMaximal.isPrime'
Nat.card_prod
Nat.card_congr
ncard_primesOver_mul_ncard_primesOver πŸ“–mathematicalβ€”Set.ncard
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
primesOver
β€”ne_bot_of_liesOver_of_ne_bot
IsDedekindDomain.toIsDomain
IsDomain.toNontrivial
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
ramificationIdxIn_ne_zero
IsMaximal.isPrime'
inertiaDegIn_ne_zero
ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn
inertiaDegIn_mul_inertiaDegIn
ramificationIdxIn_mul_ramificationIdxIn
map_ne_bot_of_ne_bot
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsGaloisGroup.card_eq_finrank
IsGaloisGroup.toFractionRing
Module.finrank_mul_finrank
FractionRing.instIsScalarTower_1
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
commRing_strongRankCondition
FractionRing.instNontrivial
Module.free_of_finite_type_torsion_free'
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
IsDomain.to_noZeroDivisors
instIsDomain
instFiniteDimensionalFractionRingOfFinite
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn πŸ“–mathematicalβ€”Set.ncard
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
primesOver
ramificationIdxIn
inertiaDegIn
Nat.card
β€”IsDedekindDomain.toIsDomain
smul_eq_mul
coe_primesOverFinset
Set.ncard_coe_finset
Finset.sum_const
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsGaloisGroup.card_eq_finrank
IsGaloisGroup.toFractionRing
sum_ramification_inertia
Localization.isLocalization
OreLocalization.instIsScalarTower
IsScalarTower.right
FractionRing.instIsScalarTower
IsScalarTower.left
Finset.sum_congr
Finset.mem_coe
ramificationIdxIn_eq_ramificationIdx
inertiaDegIn_eq_inertiaDeg
ramificationIdxIn_eq_ramificationIdx πŸ“–mathematicalβ€”ramificationIdxIn
ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”ramificationIdxIn.eq_1
ramificationIdx_eq_of_isGaloisGroup
ramificationIdxIn_mul_ramificationIdxIn πŸ“–mathematicalβ€”ramificationIdxInβ€”nonempty_primesOver
IsDomain.toNontrivial
Algebra.IsIntegral.of_finite
LiesOver.trans
ramificationIdxIn_eq_ramificationIdx
ramificationIdx_algebra_tower
map_comap_le
over_def
ramificationIdxIn_ne_zero πŸ“–β€”β€”β€”β€”Algebra.IsInvariant.isIntegral
IsGaloisGroup.isInvariant
nonempty_primesOver
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
ramificationIdxIn_eq_ramificationIdx
primesOver.isPrime
primesOver.liesOver
IsDedekindDomain.ramificationIdx_ne_zero_of_liesOver
ramificationIdx_eq_of_isGalois πŸ“–mathematicalβ€”ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”ramificationIdx_eq_of_isGaloisGroup
ramificationIdx_eq_of_isGaloisGroup πŸ“–mathematicalβ€”ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”exists_smul_eq_of_isGaloisGroup
IsGaloisGroup.commutes
ramificationIdx_map_eq
AlgEquiv.instAlgEquivClass

---

← Back to Index