Documentation Verification Report

Unramified

📁 Source: Mathlib/NumberTheory/RamificationInertia/Unramified.lean

Statistics

MetricCount
Definitions0
Theoremsof_liesOver, isUnramifiedAt_iff_of_isDedekindDomain, ramificationIdx_eq_one_of_isUnramifiedAt, of_liesOver_of_ne_bot
4
Total4

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
isUnramifiedAt_iff_of_isDedekindDomain 📖mathematicalIsUnramifiedAt
Ideal.ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal.under
Ideal.IsPrime.under
Ideal.over_under
instIsLocalHomAtPrimeRingHomAlgebraMap
Localization.AtPrime.isLocalRing
isUnramifiedAt_iff_map_eq
Ideal.finiteQuotientOfFreeOfNeBot
Module.free_of_finite_type_torsion_free'
EuclideanDomain.to_principal_ideal_domain
Int.instIsDomain
instIsTorsionFreeIntOfIsAddTorsionFree
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
Ideal.eq_bot_of_comap_eq_bot
instNontrivialOfCharZero
IsDedekindDomain.toIsDomain
IsLocalization.finite
instIsFractionRingQuotientIdealResidueField
IsAlgebraic.isSeparable_of_perfectField
instIsAlgebraicResidueFieldOfIsIntegral
PerfectField.ofFinite
RingHom.instRingHomClass
Ideal.IsDedekindDomain.ramificationIdx_eq_one_iff
Ideal.map_comap_le

Algebra.IsUnramifiedAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_liesOver 📖mathematicalAlgebra.IsUnramifiedAtIsUnramifiedAt.of_liesOver_of_ne_bot
Ideal.primeCompl_le_nonZeroDivisors
IsDomain.to_noZeroDivisors
Ideal.ne_bot_of_liesOver_of_ne_bot
IsDedekindDomain.toIsDomain
IsDomain.toNontrivial

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
ramificationIdx_eq_one_of_isUnramifiedAt 📖mathematicalramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
under
ramificationIdx_eq_one_of_map_localization
map_comap_le
primeCompl_le_nonZeroDivisors
IsDomain.to_noZeroDivisors
IsPrime.under
over_under
instIsLocalHomAtPrimeRingHomAlgebraMap
Localization.AtPrime.isLocalRing
Algebra.isUnramifiedAt_iff_map_eq

IsUnramifiedAt

Theorems

NameKindAssumesProvesValidatesDepends On
of_liesOver_of_ne_bot 📖mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Ideal.primeCompl
nonZeroDivisors
Semiring.toMonoidWithZero
Algebra.IsUnramifiedAtIdeal.LiesOver.trans
Ideal.over_under
Ideal.LiesOver.over
Algebra.EssFiniteType.of_comp
Algebra.EssFiniteType.isNoetherianRing
IsDedekindDomainDvr.toIsNoetherian
IsDedekindDomain.toIsDomain
IsDedekindDomain.isDedekindDomainDvr
Ideal.IsPrime.under
instIsLocalHomAtPrimeRingHomAlgebraMap
Localization.AtPrime.isLocalRing
Algebra.isUnramifiedAt_iff_map_eq
Algebra.isSeparable_tower_bot_of_isSeparable
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsLocalRing.ResidueField.instIsScalarTower_1
Localization.AtPrime.instIsScalarTower_1
le_bot_iff
Ideal.map_comap_le
IsScalarTower.algebraMap_eq
OreLocalization.instIsScalarTower
IsScalarTower.right
Ideal.map_map
Localization.AtPrime.map_eq_maximalIdeal
RingHom.instRingHomClass
Ideal.IsDedekindDomain.ramificationIdx_eq_one_iff
not_ne_iff
Ideal.ramificationIdx_ne_one_iff
Ideal.ramificationIdx_eq_one_of_map_localization
Ideal.map_mono
LE.le.trans
Ideal.map_pow
Ideal.pow_right_mono
Ideal.map_le_iff_le_comap
Eq.le

---

← Back to Index