Documentation Verification Report

Irrational

πŸ“ Source: Mathlib/NumberTheory/Real/Irrational.lean

Statistics

MetricCount
DefinitionsinstDecidableIrrationalSqrtCastReal, instDecidableIrrationalSqrtCastReal_1, instDecidableIrrationalSqrtCastReal_2, instDecidableIrrationalSqrtOfNatReal
4
Theoremsnot_irrational, add_cases, add_intCast, add_natCast, add_ratCast, div_cases, div_intCast, div_natCast, div_ratCast, intCast_add, intCast_div, intCast_mul, intCast_sub, inv, mul_cases, mul_intCast, mul_natCast, mul_ratCast, natCast_add, natCast_div, natCast_mul, natCast_sub, ne_int, ne_nat, ne_ofNat, ne_one, ne_rat, ne_rational, ne_zero, neg, of_add_intCast, of_add_natCast, of_add_ratCast, of_div_intCast, of_div_natCast, of_div_ratCast, of_intCast_add, of_intCast_div, of_intCast_mul, of_intCast_sub, of_inv, of_mul_intCast, of_mul_natCast, of_mul_ratCast, of_mul_self, of_natCast_add, of_natCast_div, of_natCast_mul, of_natCast_sub, of_neg, of_one_div, of_pow, of_ratCast_add, of_ratCast_div, of_ratCast_mul, of_ratCast_sub, of_sub_intCast, of_sub_natCast, of_sub_ratCast, of_zpow, ratCast_add, ratCast_div, ratCast_mul, ratCast_sub, sub_intCast, sub_natCast, sub_ratCast, irrational_sqrt, not_irrational, not_irrational, irrational, exists_irrational_btwn, exists_rat_of_not_irrational, irrational_add_intCast_iff, irrational_add_natCast_iff, irrational_add_ratCast_iff, irrational_div_intCast_iff, irrational_div_natCast_iff, irrational_div_ratCast_iff, irrational_iff_ne_rational, irrational_intCast_add_iff, irrational_intCast_div_iff, irrational_intCast_mul_iff, irrational_intCast_sub_iff, irrational_inv_iff, irrational_mul_intCast_iff, irrational_mul_natCast_iff, irrational_mul_ratCast_iff, irrational_natCast_add_iff, irrational_natCast_div_iff, irrational_natCast_mul_iff, irrational_natCast_sub_iff, irrational_neg_iff, irrational_nrt_of_n_not_dvd_multiplicity, irrational_nrt_of_notint_nrt, irrational_ratCast_add_iff, irrational_ratCast_div_iff, irrational_ratCast_mul_iff, irrational_ratCast_sub_iff, irrational_sqrt_intCast_iff, irrational_sqrt_intCast_iff_of_nonneg, irrational_sqrt_natCast_iff, irrational_sqrt_ofNat_iff, irrational_sqrt_of_multiplicity_odd, irrational_sqrt_ratCast_iff, irrational_sqrt_ratCast_iff_of_nonneg, irrational_sqrt_two, irrational_sub_intCast_iff, irrational_sub_natCast_iff, irrational_sub_ratCast_iff, not_irrational_ofNat, not_irrational_one, not_irrational_zero, one_lt_natDegree_of_irrational_root
114
Total118

Int

Theorems

NameKindAssumesProvesValidatesDepends On
not_irrational πŸ“–mathematicalβ€”Irrational
Real
Real.instIntCast
β€”Irrational.ne_int

Irrational

Theorems

NameKindAssumesProvesValidatesDepends On
add_cases πŸ“–β€”Irrational
Real
Real.instAdd
β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Rat.cast_add
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
add_intCast πŸ“–mathematicalIrrationalReal
Real.instAdd
Real.instIntCast
β€”intCast_add
add_comm
add_natCast πŸ“–mathematicalIrrationalReal
Real.instAdd
Real.instNatCast
β€”add_intCast
add_ratCast πŸ“–mathematicalIrrationalReal
Real.instAdd
Real.instRatCast
β€”ratCast_add
add_comm
div_cases πŸ“–β€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”β€”of_inv
mul_cases
div_intCast πŸ“–mathematicalIrrationalReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
β€”Rat.cast_intCast
div_ratCast
Int.cast_ne_zero
Rat.instCharZero
div_natCast πŸ“–mathematicalIrrationalReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
β€”div_intCast
div_ratCast πŸ“–mathematicalIrrationalReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instRatCast
β€”div_eq_mul_inv
Rat.cast_inv
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
mul_ratCast
inv_ne_zero
intCast_add πŸ“–mathematicalIrrationalReal
Real.instAdd
Real.instIntCast
β€”Rat.cast_intCast
ratCast_add
intCast_div πŸ“–mathematicalIrrationalReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
β€”intCast_mul
inv
intCast_mul πŸ“–mathematicalIrrationalReal
Real.instMul
Real.instIntCast
β€”mul_intCast
mul_comm
intCast_sub πŸ“–mathematicalIrrationalReal
Real.instSub
Real.instIntCast
β€”Rat.cast_intCast
ratCast_sub
inv πŸ“–mathematicalIrrationalReal
Real.instInv
β€”of_inv
inv_inv
mul_cases πŸ“–β€”Irrational
Real
Real.instMul
β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Rat.cast_mul
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
mul_intCast πŸ“–mathematicalIrrationalReal
Real.instMul
Real.instIntCast
β€”Rat.cast_intCast
mul_ratCast
Int.cast_ne_zero
Rat.instCharZero
mul_natCast πŸ“–mathematicalIrrationalReal
Real.instMul
Real.instNatCast
β€”mul_intCast
mul_ratCast πŸ“–mathematicalIrrationalReal
Real.instMul
Real.instRatCast
β€”of_mul_ratCast
mul_assoc
Rat.cast_mul
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
mul_inv_cancelβ‚€
Rat.cast_one
mul_one
natCast_add πŸ“–mathematicalIrrationalReal
Real.instAdd
Real.instNatCast
β€”intCast_add
natCast_div πŸ“–mathematicalIrrationalReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
β€”natCast_mul
inv
natCast_mul πŸ“–mathematicalIrrationalReal
Real.instMul
Real.instNatCast
β€”intCast_mul
natCast_sub πŸ“–mathematicalIrrationalReal
Real.instSub
Real.instNatCast
β€”intCast_sub
ne_int πŸ“–β€”Irrationalβ€”β€”Rat.cast_intCast
ne_rat
ne_nat πŸ“–β€”Irrationalβ€”β€”ne_int
ne_ofNat πŸ“–β€”Irrationalβ€”β€”ne_nat
ne_one πŸ“–β€”Irrationalβ€”β€”Nat.cast_one
ne_nat
ne_rat πŸ“–β€”Irrationalβ€”β€”β€”
ne_rational πŸ“–β€”Irrationalβ€”β€”Rat.cast_div
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Rat.cast_intCast
ne_zero πŸ“–β€”Irrationalβ€”β€”Nat.cast_zero
ne_nat
neg πŸ“–mathematicalIrrationalReal
Real.instNeg
β€”of_neg
neg_neg
of_add_intCast πŸ“–β€”Irrational
Real
Real.instAdd
Real.instIntCast
β€”β€”of_intCast_add
add_comm
of_add_natCast πŸ“–β€”Irrational
Real
Real.instAdd
Real.instNatCast
β€”β€”of_add_intCast
of_add_ratCast πŸ“–β€”Irrational
Real
Real.instAdd
Real.instRatCast
β€”β€”of_ratCast_add
add_comm
of_div_intCast πŸ“–β€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
β€”β€”div_cases
Int.not_irrational
of_div_natCast πŸ“–β€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
β€”β€”of_div_intCast
of_div_ratCast πŸ“–β€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instRatCast
β€”β€”div_cases
Rat.not_irrational
of_intCast_add πŸ“–β€”Irrational
Real
Real.instAdd
Real.instIntCast
β€”β€”of_ratCast_add
Rat.cast_intCast
of_intCast_div πŸ“–β€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
β€”β€”div_cases
Int.not_irrational
of_intCast_mul πŸ“–β€”Irrational
Real
Real.instMul
Real.instIntCast
β€”β€”of_ratCast_mul
Rat.cast_intCast
of_intCast_sub πŸ“–β€”Irrational
Real
Real.instSub
Real.instIntCast
β€”β€”of_ratCast_sub
Rat.cast_intCast
of_inv πŸ“–β€”Irrational
Real
Real.instInv
β€”β€”Rat.cast_inv
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
of_mul_intCast πŸ“–β€”Irrational
Real
Real.instMul
Real.instIntCast
β€”β€”of_mul_ratCast
Rat.cast_intCast
of_mul_natCast πŸ“–β€”Irrational
Real
Real.instMul
Real.instNatCast
β€”β€”of_mul_intCast
of_mul_ratCast πŸ“–β€”Irrational
Real
Real.instMul
Real.instRatCast
β€”β€”mul_cases
Rat.not_irrational
of_mul_self πŸ“–β€”Irrational
Real
Real.instMul
β€”β€”mul_cases
of_natCast_add πŸ“–β€”Irrational
Real
Real.instAdd
Real.instNatCast
β€”β€”of_intCast_add
of_natCast_div πŸ“–β€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
β€”β€”of_intCast_div
of_natCast_mul πŸ“–β€”Irrational
Real
Real.instMul
Real.instNatCast
β€”β€”of_intCast_mul
of_natCast_sub πŸ“–β€”Irrational
Real
Real.instSub
Real.instNatCast
β€”β€”of_intCast_sub
of_neg πŸ“–β€”Irrational
Real
Real.instNeg
β€”β€”Rat.cast_neg
of_one_div πŸ“–β€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”β€”of_ratCast_div
Rat.cast_one
of_pow πŸ“–β€”Irrational
Real
Monoid.toNatPow
Real.instMonoid
β€”β€”pow_zero
Rat.cast_one
mul_cases
pow_succ
of_ratCast_add πŸ“–β€”Irrational
Real
Real.instAdd
Real.instRatCast
β€”β€”add_cases
Rat.not_irrational
of_ratCast_div πŸ“–β€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instRatCast
β€”β€”of_inv
of_ratCast_mul
of_ratCast_mul πŸ“–β€”Irrational
Real
Real.instMul
Real.instRatCast
β€”β€”of_mul_ratCast
mul_comm
of_ratCast_sub πŸ“–β€”Irrational
Real
Real.instSub
Real.instRatCast
β€”β€”of_neg
of_ratCast_add
sub_eq_add_neg
of_sub_intCast πŸ“–β€”Irrational
Real
Real.instSub
Real.instIntCast
β€”β€”of_sub_ratCast
Rat.cast_intCast
of_sub_natCast πŸ“–β€”Irrational
Real
Real.instSub
Real.instNatCast
β€”β€”of_sub_intCast
of_sub_ratCast πŸ“–β€”Irrational
Real
Real.instSub
Real.instRatCast
β€”β€”of_add_ratCast
Rat.cast_neg
sub_eq_add_neg
of_zpow πŸ“–β€”Irrational
Real
DivInvMonoid.toZPow
Real.instDivInvMonoid
β€”β€”of_pow
zpow_natCast
of_inv
zpow_negSucc
ratCast_add πŸ“–mathematicalIrrationalReal
Real.instAdd
Real.instRatCast
β€”of_ratCast_add
Rat.cast_neg
neg_add_cancel_left
ratCast_div πŸ“–mathematicalIrrationalReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instRatCast
β€”ratCast_mul
inv
ratCast_mul πŸ“–mathematicalIrrationalReal
Real.instMul
Real.instRatCast
β€”mul_ratCast
mul_comm
ratCast_sub πŸ“–mathematicalIrrationalReal
Real.instSub
Real.instRatCast
β€”sub_eq_add_neg
ratCast_add
neg
sub_intCast πŸ“–mathematicalIrrationalReal
Real.instSub
Real.instIntCast
β€”Rat.cast_intCast
sub_ratCast
sub_natCast πŸ“–mathematicalIrrationalReal
Real.instSub
Real.instNatCast
β€”sub_intCast
sub_ratCast πŸ“–mathematicalIrrationalReal
Real.instSub
Real.instRatCast
β€”sub_eq_add_neg
Rat.cast_neg
add_ratCast

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
not_irrational πŸ“–mathematicalβ€”Irrational
Real
Real.instNatCast
β€”Irrational.ne_nat

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
irrational_sqrt πŸ“–mathematicalNat.PrimeIrrational
Real.sqrt
Real
Real.instNatCast
β€”irrational_sqrt_natCast_iff
Irreducible.not_isSquare

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
not_irrational πŸ“–mathematicalβ€”Irrational
Real
Real.instRatCast
β€”β€”

Transcendental

Theorems

NameKindAssumesProvesValidatesDepends On
irrational πŸ“–mathematicalTranscendental
Real
Rat.commRing
Real.instRing
DivisionRing.toRatAlgebra
Real.instDivisionRing
IsStrictOrderedRing.toCharZero
Ring.toSemiring
DivisionRing.toRing
Real.partialOrder
Real.instIsStrictOrderedRing
Irrationalβ€”IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
isAlgebraic_algebraMap
Rat.nontrivial

(root)

Definitions

NameCategoryTheorems
instDecidableIrrationalSqrtCastReal πŸ“–CompOpβ€”
instDecidableIrrationalSqrtCastReal_1 πŸ“–CompOpβ€”
instDecidableIrrationalSqrtCastReal_2 πŸ“–CompOpβ€”
instDecidableIrrationalSqrtOfNatReal πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_irrational_btwn πŸ“–mathematicalReal
Real.instLT
Irrationalβ€”Nat.instAtLeastTwoHAddOfNat
exists_rat_btwn
Real.instIsStrictOrderedRing
Real.instArchimedean
sub_lt_sub_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Irrational.ratCast_add
irrational_sqrt_two
sub_lt_iff_lt_add
lt_sub_iff_add_lt
exists_rat_of_not_irrational πŸ“–mathematicalIrrationalReal
Real.instRatCast
β€”β€”
irrational_add_intCast_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instAdd
Real.instIntCast
β€”Irrational.of_add_intCast
Irrational.add_intCast
irrational_add_natCast_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instAdd
Real.instNatCast
β€”Irrational.of_add_natCast
Irrational.add_natCast
irrational_add_ratCast_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instAdd
Real.instRatCast
β€”Irrational.of_add_ratCast
Irrational.add_ratCast
irrational_div_intCast_iff πŸ“–mathematicalβ€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
β€”Rat.cast_intCast
irrational_div_ratCast_iff
Int.cast_ne_zero
Rat.instCharZero
irrational_div_natCast_iff πŸ“–mathematicalβ€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
β€”Rat.cast_natCast
irrational_div_ratCast_iff
Nat.cast_ne_zero
Rat.instCharZero
irrational_div_ratCast_iff πŸ“–mathematicalβ€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instRatCast
β€”div_eq_mul_inv
Rat.cast_inv
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
irrational_mul_ratCast_iff
inv_eq_zero
irrational_iff_ne_rational πŸ“–mathematicalβ€”Irrationalβ€”Rat.cast_div
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Rat.cast_intCast
irrational_intCast_add_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instAdd
Real.instIntCast
β€”Irrational.of_intCast_add
Irrational.intCast_add
irrational_intCast_div_iff πŸ“–mathematicalβ€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
β€”div_eq_mul_inv
irrational_intCast_mul_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instMul
Real.instIntCast
β€”Rat.cast_intCast
irrational_ratCast_mul_iff
Int.cast_ne_zero
Rat.instCharZero
irrational_intCast_sub_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instSub
Real.instIntCast
β€”Irrational.of_intCast_sub
Irrational.intCast_sub
irrational_inv_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instInv
β€”Irrational.of_inv
Irrational.inv
irrational_mul_intCast_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instMul
Real.instIntCast
β€”Rat.cast_intCast
irrational_mul_ratCast_iff
Int.cast_ne_zero
Rat.instCharZero
irrational_mul_natCast_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instMul
Real.instNatCast
β€”Rat.cast_natCast
irrational_mul_ratCast_iff
Nat.cast_ne_zero
Rat.instCharZero
irrational_mul_ratCast_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instMul
Real.instRatCast
β€”mul_comm
irrational_ratCast_mul_iff
irrational_natCast_add_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instAdd
Real.instNatCast
β€”Irrational.of_natCast_add
Irrational.natCast_add
irrational_natCast_div_iff πŸ“–mathematicalβ€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
β€”div_eq_mul_inv
irrational_natCast_mul_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instMul
Real.instNatCast
β€”Rat.cast_natCast
irrational_ratCast_mul_iff
Nat.cast_ne_zero
Rat.instCharZero
irrational_natCast_sub_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instSub
Real.instNatCast
β€”Irrational.of_natCast_sub
Irrational.natCast_sub
irrational_neg_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instNeg
β€”Irrational.of_neg
Irrational.neg
irrational_nrt_of_n_not_dvd_multiplicity πŸ“–mathematicalReal
Monoid.toNatPow
Real.instMonoid
Real.instIntCast
Irrationalβ€”IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Int.cast_one
pow_zero
multiplicity_of_one_right
isUnit_iff_dvd_one
Nat.Prime.not_dvd_one
Fact.out
irrational_nrt_of_notint_nrt
zero_pow
LT.lt.ne'
FiniteMultiplicity.multiplicity_pow
Int.instIsCancelMulZero
Nat.prime_iff_prime_int
Int.finiteMultiplicity_iff
Nat.Prime.ne_one
Int.cast_pow
irrational_nrt_of_notint_nrt πŸ“–mathematicalReal
Monoid.toNatPow
Real.instMonoid
Real.instIntCast
Irrationalβ€”Int.cast_ne_zero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
Dvd.intro_left
Int.cast_mul
Int.cast_pow
div_eq_iff_mul_eq
div_pow
Rat.cast_divInt
Rat.cast_pow
Rat.divInt_one
Rat.cast_intCast
LT.lt.ne'
irrational_ratCast_add_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instAdd
Real.instRatCast
β€”Irrational.of_ratCast_add
Irrational.ratCast_add
irrational_ratCast_div_iff πŸ“–mathematicalβ€”Irrational
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instRatCast
β€”div_eq_mul_inv
irrational_ratCast_mul_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instMul
Real.instRatCast
β€”Rat.cast_ne_zero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
left_ne_zero_of_mul
Irrational.ne_zero
Irrational.of_ratCast_mul
Irrational.ratCast_mul
irrational_ratCast_sub_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instSub
Real.instRatCast
β€”Irrational.of_ratCast_sub
Irrational.ratCast_sub
irrational_sqrt_intCast_iff πŸ“–mathematicalβ€”Irrational
Real.sqrt
Real
Real.instIntCast
IsSquare
β€”Rat.cast_intCast
irrational_sqrt_ratCast_iff
Rat.isSquare_intCast_iff
Int.cast_nonneg_iff
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.charZero_one
Rat.instCharZero
irrational_sqrt_intCast_iff_of_nonneg πŸ“–mathematicalβ€”Irrational
Real.sqrt
Real
Real.instIntCast
IsSquare
β€”Rat.isSquare_intCast_iff
irrational_sqrt_ratCast_iff_of_nonneg
Nat.cast_zero
Int.cast_zero
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.charZero_one
Rat.instCharZero
Rat.cast_intCast
irrational_sqrt_natCast_iff πŸ“–mathematicalβ€”Irrational
Real.sqrt
Real
Real.instNatCast
IsSquare
β€”Rat.isSquare_natCast_iff
irrational_sqrt_ratCast_iff_of_nonneg
Nat.cast_nonneg
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Rat.cast_natCast
irrational_sqrt_ofNat_iff πŸ“–mathematicalβ€”Irrational
Real.sqrt
IsSquare
β€”irrational_sqrt_natCast_iff
irrational_sqrt_of_multiplicity_odd πŸ“–mathematicalmultiplicity
Int.instMonoid
Irrational
Real.sqrt
Real
Real.instIntCast
β€”irrational_nrt_of_n_not_dvd_multiplicity
ne_of_lt
Real.sq_sqrt
Int.cast_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
LT.lt.le
one_ne_zero
irrational_sqrt_ratCast_iff πŸ“–mathematicalβ€”Irrational
Real.sqrt
Real
Real.instRatCast
IsSquare
β€”le_or_gt
irrational_sqrt_ratCast_iff_of_nonneg
Real.sqrt_eq_zero_of_nonpos
Rat.cast_nonpos
Real.instIsStrictOrderedRing
LT.lt.le
irrational_sqrt_ratCast_iff_of_nonneg πŸ“–mathematicalβ€”Irrational
Real.sqrt
Real
Real.instRatCast
IsSquare
β€”Iff.not
Rat.cast_injective
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Rat.cast_mul
Real.mul_self_sqrt
Rat.cast_nonneg
Real.sqrt_mul_self_eq_abs
irrational_sqrt_two πŸ“–mathematicalβ€”Irrational
Real.sqrt
Real
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.Prime.irrational_sqrt
Nat.prime_two
irrational_sub_intCast_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instSub
Real.instIntCast
β€”Irrational.of_sub_intCast
Irrational.sub_intCast
irrational_sub_natCast_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instSub
Real.instNatCast
β€”Irrational.of_sub_natCast
Irrational.sub_natCast
irrational_sub_ratCast_iff πŸ“–mathematicalβ€”Irrational
Real
Real.instSub
Real.instRatCast
β€”Irrational.of_sub_ratCast
Irrational.sub_ratCast
not_irrational_ofNat πŸ“–mathematicalβ€”Irrationalβ€”Nat.not_irrational
not_irrational_one πŸ“–mathematicalβ€”Irrational
Real
Real.instOne
β€”Rat.cast_one
not_irrational_zero πŸ“–mathematicalβ€”Irrational
Real
Real.instZero
β€”Rat.cast_zero
one_lt_natDegree_of_irrational_root πŸ“–mathematicalIrrational
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Int.instCommSemiring
Real
Polynomial.semiring
Real.semiring
Polynomial.algebraOfAlgebra
Algebra.id
Ring.toIntAlgebra
Real.instRing
AlgHom.funLike
Polynomial.aeval
Real.instZero
Polynomial.natDegree
Int.instSemiring
β€”Polynomial.exists_eq_X_add_C_of_natDegree_le_one
not_lt
eq_intCast
RingHom.instRingHomClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_intCast
AlgHomClass.toRingHomClass
Polynomial.aeval_X
em
Int.cast_zero
MulZeroClass.zero_mul
add_zero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Rat.instCharZero
eq_div_iff_mul_eq
Nat.cast_zero
mul_comm

---

← Back to Index