Documentation Verification Report

SiegelsLemma

📁 Source: Mathlib/NumberTheory/SiegelsLemma.lean

Statistics

MetricCount
Definitions0
Theoremsexists_ne_zero_int_vec_norm_le, exists_ne_zero_int_vec_norm_le', one_le_norm_A_of_ne_zero
3
Total3

Int.Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
exists_ne_zero_int_vec_norm_le 📖mathematicalFintype.cardMatrix.mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Real
Real.instLE
Norm.norm
NormedRing.toNorm
Pi.normedRing
NormedCommRing.toNormedRing
Real.instPow
Real.instMul
Real.instNatCast
Real.instMax
Real.instOne
Matrix
SeminormedAddCommGroup.toNorm
Matrix.seminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instIsStrictOrderedRing
Finset.exists_ne_map_eq_of_card_lt_of_maps_to
sub_ne_zero
Matrix.mulVec_sub
Real.rpow_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
le_of_lt
lt_max_of_lt_left
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Matrix.norm_replicateCol
Matrix.norm_le_iff
Int.norm_eq_abs
Int.cast_abs
le_trans
Int.cast_natCast
RCLike.charZero_rclike
Rat.cast_divInt
Int.cast_subNatNat
NeZero.charZero_one
abs_le
Int.instIsOrderedAddMonoid
Int.instAddLeftMono
Finset.mem_Icc
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
AddGroup.toOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.floor_le
exists_ne_zero_int_vec_norm_le' 📖mathematicalFintype.cardMatrix.mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Int.instNormedCommRing
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Real
Real.instLE
Norm.norm
NormedRing.toNorm
Pi.normedRing
NormedCommRing.toNormedRing
Real.instPow
Real.instMul
Real.instNatCast
Matrix
SeminormedAddCommGroup.toNorm
Matrix.seminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
exists_ne_zero_int_vec_norm_le
max_eq_right
one_le_norm_A_of_ne_zero
one_le_norm_A_of_ne_zero 📖mathematicalReal
Real.instLE
Real.instOne
Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
Matrix.seminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Int.instNormedCommRing
Matrix.ext
Int.abs_lt_one_iff
Nat.cast_one
Real.instIsStrictOrderedRing
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Int.norm_eq_abs
Matrix.norm_lt_iff
Real.zero_lt_one

---

← Back to Index