Documentation Verification Report

SmoothNumbers

πŸ“ Source: Mathlib/NumberTheory/SmoothNumbers.lean

Statistics

MetricCount
DefinitionsequivProdNatFactoredNumbers, equivProdNatSmoothNumbers, factoredNumbers, instDecidablePredMemSetFactoredNumbers, instDecidablePredMemSetSmoothNumbers, primesBelow, roughNumbersUpTo, smoothNumbers, smoothNumbersUpTo
9
TheoremsfactoredNumbers_coprime, smoothNumbers_coprime, eq_prod_primes_mul_sq_of_mem_smoothNumbers, equivProdNatFactoredNumbers_apply, equivProdNatFactoredNumbers_apply', equivProdNatSmoothNumbers_apply, equivProdNatSmoothNumbers_apply', map_prime_pow_mul, factoredNumbers_compl, factoredNumbers_empty, factoredNumbers_insert, factoredNumbers_mono, lt_of_mem_primesBelow, map_prime_pow_mul, mem_factoredNumbers, mem_factoredNumbers', mem_factoredNumbers_iff_forall_le, mem_factoredNumbers_iff_primeFactors_subset, mem_factoredNumbers_of_dvd, mem_factoredNumbers_of_primeFactors_subset, mem_primesBelow, mem_smoothNumbers, mem_smoothNumbers', mem_smoothNumbersUpTo, mem_smoothNumbers_iff_forall_le, mem_smoothNumbers_iff_primeFactors_subset, mem_smoothNumbers_of_dvd, mem_smoothNumbers_of_lt, mem_smoothNumbers_of_primeFactors_subset, mul_mem_factoredNumbers, mul_mem_smoothNumbers, ne_zero_of_mem_factoredNumbers, ne_zero_of_mem_smoothNumbers, notMem_primesBelow, pow_mul_mem_factoredNumbers, pow_mul_mem_smoothNumbers, primeFactors_subset_of_mem_factoredNumbers, primeFactors_subset_of_mem_smoothNumbers, prime_of_mem_primesBelow, primesBelow_succ, primesBelow_zero, prod_mem_factoredNumbers, prod_mem_smoothNumbers, roughNumbersUpTo_card_le, roughNumbersUpTo_eq_biUnion, smoothNumbersUpTo_card_add_roughNumbersUpTo_card, smoothNumbersUpTo_card_le, smoothNumbersUpTo_subset_image, smoothNumbers_compl, smoothNumbers_eq_factoredNumbers, smoothNumbers_eq_factoredNumbers_primesBelow, smoothNumbers_mono, smoothNumbers_one, smoothNumbers_succ, smoothNumbers_zero
55
Total64

Nat

Definitions

NameCategoryTheorems
equivProdNatFactoredNumbers πŸ“–CompOp
2 mathmath: equivProdNatFactoredNumbers_apply, equivProdNatFactoredNumbers_apply'
equivProdNatSmoothNumbers πŸ“–CompOp
2 mathmath: equivProdNatSmoothNumbers_apply', equivProdNatSmoothNumbers_apply
factoredNumbers πŸ“–CompOp
19 mathmath: mem_factoredNumbers', prod_mem_factoredNumbers, factoredNumbers_insert, smoothNumbers_eq_factoredNumbers_primesBelow, factoredNumbers.map_prime_pow_mul, mem_factoredNumbers_iff_forall_le, factoredNumbers_mono, mem_factoredNumbers_of_primeFactors_subset, EulerProduct.prod_filter_prime_geometric_eq_tsum_factoredNumbers, EulerProduct.summable_and_hasSum_factoredNumbers_prod_filter_prime_geometric, EulerProduct.prod_filter_prime_tsum_eq_tsum_factoredNumbers, smoothNumbers_eq_factoredNumbers, mem_factoredNumbers_iff_primeFactors_subset, EulerProduct.norm_tsum_factoredNumbers_sub_tsum_lt, factoredNumbers_empty, equivProdNatFactoredNumbers_apply', mem_factoredNumbers, EulerProduct.summable_and_hasSum_factoredNumbers_prod_filter_prime_tsum, factoredNumbers_compl
instDecidablePredMemSetFactoredNumbers πŸ“–CompOpβ€”
instDecidablePredMemSetSmoothNumbers πŸ“–CompOpβ€”
primesBelow πŸ“–CompOp
24 mathmath: smoothNumbersUpTo_subset_image, roughNumbersUpTo_card_le, eq_prod_primes_mul_sq_of_mem_smoothNumbers, primeFactors_subset_of_mem_smoothNumbers, EulerProduct.eulerProduct_completely_multiplicative, smoothNumbers_eq_factoredNumbers_primesBelow, roughNumbersUpTo_eq_biUnion, EulerProduct.eulerProduct, EulerProduct.prod_primesBelow_tsum_eq_tsum_smoothNumbers, EulerProduct.summable_and_hasSum_smoothNumbers_prod_primesBelow_geometric, EulerProduct.prod_primesBelow_geometric_eq_tsum_smoothNumbers, ArithmeticFunction.IsMultiplicative.eulerProduct, smoothNumbersUpTo_card_le, roughNumbersUpTo_card_le', primesBelow_zero, primesBelow_succ, riemannZeta_eulerProduct, primesBelow_card_eq_primeCounting', EulerProduct.summable_and_hasSum_smoothNumbers_prod_primesBelow_tsum, mem_smoothNumbers_iff_primeFactors_subset, mem_primesBelow, DirichletCharacter.LSeries_eulerProduct, notMem_primesBelow, one_half_le_sum_primes_ge_one_div
roughNumbersUpTo πŸ“–CompOp
4 mathmath: roughNumbersUpTo_card_le, smoothNumbersUpTo_card_add_roughNumbersUpTo_card, roughNumbersUpTo_eq_biUnion, roughNumbersUpTo_card_le'
smoothNumbers πŸ“–CompOp
22 mathmath: prod_mem_smoothNumbers, mem_smoothNumbers_of_lt, mem_smoothNumbers', smoothNumbers_eq_factoredNumbers_primesBelow, mem_smoothNumbers_iff_forall_le, smoothNumbers_succ, EulerProduct.prod_primesBelow_tsum_eq_tsum_smoothNumbers, EulerProduct.summable_and_hasSum_smoothNumbers_prod_primesBelow_geometric, EulerProduct.prod_primesBelow_geometric_eq_tsum_smoothNumbers, smoothNumbers_compl, smoothNumbers_one, smoothNumbers_eq_factoredNumbers, equivProdNatSmoothNumbers_apply', mem_smoothNumbers_of_primeFactors_subset, EulerProduct.summable_and_hasSum_smoothNumbers_prod_primesBelow_tsum, mem_smoothNumbers_iff_primeFactors_subset, smoothNumbers_zero, map_prime_pow_mul, mem_smoothNumbersUpTo, smoothNumbers_mono, mem_smoothNumbers, EulerProduct.norm_tsum_smoothNumbers_sub_tsum_lt
smoothNumbersUpTo πŸ“–CompOp
4 mathmath: smoothNumbersUpTo_subset_image, smoothNumbersUpTo_card_add_roughNumbersUpTo_card, smoothNumbersUpTo_card_le, mem_smoothNumbersUpTo

Theorems

NameKindAssumesProvesValidatesDepends On
eq_prod_primes_mul_sq_of_mem_smoothNumbers πŸ“–mathematicalSet
Set.instMembership
smoothNumbers
Finset
Finset.instMembership
Finset.powerset
primesBelow
Monoid.toNatPow
instMonoid
Finset.prod
instCommMonoid
β€”sq_mul_squarefree
mem_smoothNumbers_of_dvd
Dvd.intro_left
mem_primesBelow
mem_smoothNumbers'
mem_primeFactors
prod_primeFactors_of_squarefree
equivProdNatFactoredNumbers_apply πŸ“–mathematicalPrime
Finset
Finset.instMembership
Set
Set.instMembership
factoredNumbers
Finset.instInsert
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equivProdNatFactoredNumbers
Monoid.toNatPow
instMonoid
β€”β€”
equivProdNatFactoredNumbers_apply' πŸ“–mathematicalPrime
Finset
Finset.instMembership
Set
Set.instMembership
factoredNumbers
Finset.instInsert
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equivProdNatFactoredNumbers
Monoid.toNatPow
instMonoid
β€”β€”
equivProdNatSmoothNumbers_apply πŸ“–mathematicalPrime
Set
Set.instMembership
smoothNumbers
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equivProdNatSmoothNumbers
Monoid.toNatPow
instMonoid
β€”β€”
equivProdNatSmoothNumbers_apply' πŸ“–mathematicalPrimeSet
Set.instMembership
smoothNumbers
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equivProdNatSmoothNumbers
Monoid.toNatPow
instMonoid
β€”β€”
factoredNumbers_compl πŸ“–mathematicalFinset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
primesBelow
Set
Set.instHasSubset
Set.instSDiff
Compl.compl
Set.instCompl
factoredNumbers
Set.instSingletonSet
setOf
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
mem_primesBelow
prime_of_mem_primeFactorsList
LE.le.trans
le_of_mem_primeFactorsList
factoredNumbers_empty πŸ“–mathematicalβ€”factoredNumbers
Finset
Finset.instEmptyCollection
Set
Set.instSingletonSet
β€”Set.ext
ne_and_eq_iff_right
zero_ne_one
factoredNumbers_insert πŸ“–mathematicalPrimefactoredNumbers
Finset
Finset.instInsert
β€”Set.ext
Finset.mem_of_mem_insert_of_ne
prime_of_mem_primeFactorsList
Finset.mem_insert_of_mem
factoredNumbers_mono πŸ“–mathematicalFinset
Preorder.toLE
PartialOrder.toPreorder
Finset.partialOrder
Set
Set.instHasSubset
factoredNumbers
β€”β€”
lt_of_mem_primesBelow πŸ“–β€”Finset
Finset.instMembership
primesBelow
β€”β€”Finset.mem_range
Finset.mem_of_mem_filter
map_prime_pow_mul πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
Set
Set.instMembership
smoothNumbers
β€”Prime.smoothNumbers_coprime
Subtype.mem
mem_factoredNumbers πŸ“–mathematicalβ€”Set
Set.instMembership
factoredNumbers
Finset
Finset.instMembership
β€”β€”
mem_factoredNumbers' πŸ“–mathematicalβ€”Set
Set.instMembership
factoredNumbers
Finset
Finset.instMembership
β€”exists_infinite_primes
mem_factoredNumbers_iff_forall_le
lt_irrefl
Finset.le_sup
dvd_zero
lt_one_add
instZeroLEOneClass
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mem_factoredNumbers_iff_forall_le πŸ“–mathematicalβ€”Set
Set.instMembership
factoredNumbers
Finset
Finset.instMembership
β€”β€”
mem_factoredNumbers_iff_primeFactors_subset πŸ“–mathematicalβ€”Set
Set.instMembership
factoredNumbers
Finset
Finset.instHasSubset
primeFactors
β€”ne_zero_of_mem_factoredNumbers
primeFactors_subset_of_mem_factoredNumbers
mem_factoredNumbers_of_primeFactors_subset
mem_factoredNumbers_of_dvd πŸ“–β€”Set
Set.instMembership
factoredNumbers
β€”β€”ne_zero_of_dvd_ne_zero
mem_primeFactorsList
Dvd.dvd.trans
mem_factoredNumbers_of_primeFactors_subset πŸ“–mathematicalFinset
Finset.instHasSubset
primeFactors
Set
Set.instMembership
factoredNumbers
β€”mem_factoredNumbers
mem_primeFactors_iff_mem_primeFactorsList
mem_primesBelow πŸ“–mathematicalβ€”Finset
Finset.instMembership
primesBelow
Prime
β€”β€”
mem_smoothNumbers πŸ“–mathematicalβ€”Set
Set.instMembership
smoothNumbers
β€”β€”
mem_smoothNumbers' πŸ“–mathematicalβ€”Set
Set.instMembership
smoothNumbers
β€”smoothNumbers_eq_factoredNumbers
mem_smoothNumbersUpTo πŸ“–mathematicalβ€”Finset
Finset.instMembership
smoothNumbersUpTo
Set
Set.instMembership
smoothNumbers
β€”instNoMaxOrder
mem_smoothNumbers_iff_forall_le πŸ“–mathematicalβ€”Set
Set.instMembership
smoothNumbers
β€”smoothNumbers_eq_factoredNumbers
mem_smoothNumbers_iff_primeFactors_subset πŸ“–mathematicalβ€”Set
Set.instMembership
smoothNumbers
Finset
Finset.instHasSubset
primeFactors
primesBelow
β€”primeFactors_subset_of_mem_smoothNumbers
mem_smoothNumbers_of_primeFactors_subset
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.filter_subset
mem_smoothNumbers_of_dvd πŸ“–β€”Set
Set.instMembership
smoothNumbers
β€”β€”smoothNumbers_eq_factoredNumbers
mem_factoredNumbers_of_dvd
mem_smoothNumbers_of_lt πŸ“–mathematicalβ€”Set
Set.instMembership
smoothNumbers
β€”ne_zero_of_lt
Finset.mem_range
lt_of_le_of_lt
le_of_mem_primeFactorsList
smoothNumbers_eq_factoredNumbers
mem_smoothNumbers_of_primeFactors_subset πŸ“–mathematicalFinset
Finset.instHasSubset
primeFactors
Finset.range
Set
Set.instMembership
smoothNumbers
β€”mem_factoredNumbers_of_primeFactors_subset
smoothNumbers_eq_factoredNumbers
mul_mem_factoredNumbers πŸ“–β€”Set
Set.instMembership
factoredNumbers
β€”β€”primeFactors_subset_of_mem_factoredNumbers
mem_factoredNumbers_of_primeFactors_subset
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
Finset.union_subset
primeFactors_mul
mul_mem_smoothNumbers πŸ“–β€”Set
Set.instMembership
smoothNumbers
β€”β€”smoothNumbers_eq_factoredNumbers
mul_mem_factoredNumbers
ne_zero_of_mem_factoredNumbers πŸ“–β€”Set
Set.instMembership
factoredNumbers
β€”β€”β€”
ne_zero_of_mem_smoothNumbers πŸ“–β€”Set
Set.instMembership
smoothNumbers
β€”β€”β€”
notMem_primesBelow πŸ“–mathematicalβ€”Finset
Finset.instMembership
primesBelow
β€”LT.lt.false
lt_of_mem_primesBelow
pow_mul_mem_factoredNumbers πŸ“–mathematicalPrime
Set
Set.instMembership
factoredNumbers
Finset
Finset.instInsert
Monoid.toNatPow
instMonoid
β€”pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
Prime.ne_zero
mul_ne_zero
mem_primeFactorsList_mul
prime_dvd_prime_iff_eq
mem_primeFactorsList
Prime.dvd_of_dvd_pow
Finset.mem_insert_self
Finset.mem_insert_of_mem
pow_mul_mem_smoothNumbers πŸ“–mathematicalSet
Set.instMembership
smoothNumbers
Monoid.toNatPow
instMonoid
β€”IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
pow_ne_zero
isReduced_of_noZeroDivisors
mul_ne_zero
mem_primeFactorsList_mul
Ne.bot_lt
Prime.dvd_of_dvd_pow
mem_primeFactorsList
LT.lt.trans
primeFactors_subset_of_mem_factoredNumbers πŸ“–mathematicalSet
Set.instMembership
factoredNumbers
Finset
Finset.instHasSubset
primeFactors
β€”mem_factoredNumbers
mem_primeFactors_iff_mem_primeFactorsList
primeFactors_subset_of_mem_smoothNumbers πŸ“–mathematicalSet
Set.instMembership
smoothNumbers
Finset
Finset.instHasSubset
primeFactors
primesBelow
β€”primeFactors_subset_of_mem_factoredNumbers
smoothNumbers_eq_factoredNumbers_primesBelow
prime_of_mem_primesBelow πŸ“–mathematicalFinset
Finset.instMembership
primesBelow
Primeβ€”Finset.mem_filter
primesBelow_succ πŸ“–mathematicalβ€”primesBelow
Finset
Prime
decidablePrime
Finset.instInsert
β€”primesBelow.eq_1
Finset.range_add_one
Finset.filter_insert
primesBelow_zero πŸ“–mathematicalβ€”primesBelow
Finset
Finset.instEmptyCollection
β€”primesBelow.eq_1
Finset.range_zero
Finset.filter_empty
prod_mem_factoredNumbers πŸ“–mathematicalβ€”Set
Set.instMembership
factoredNumbers
instOne
Finset
Finset.instMembership
Finset.decidableMem
primeFactorsList
β€”List.prod_ne_zero
instNontrivial
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
LT.lt.false
pos_of_mem_primeFactorsList
List.mem_of_mem_filter
mem_primeFactorsList
List.of_mem_filter
mem_list_primes_of_dvd_prod
instIsCancelMulZero
Unique.instSubsingleton
Prime.prime
prime_of_mem_primeFactorsList
prod_mem_smoothNumbers πŸ“–mathematicalβ€”Set
Set.instMembership
smoothNumbers
instOne
primeFactorsList
β€”smoothNumbers_eq_factoredNumbers
roughNumbersUpTo_card_le πŸ“–mathematicalβ€”Finset.card
roughNumbersUpTo
Finset.sum
instAddCommMonoid
Finset
Finset.instSDiff
primesBelow
β€”roughNumbersUpTo_eq_biUnion
LE.le.trans
Finset.card_biUnion_le
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Eq.le
card_multiples'
roughNumbersUpTo_eq_biUnion πŸ“–mathematicalβ€”roughNumbersUpTo
Finset.biUnion
Finset
Finset.instSDiff
primesBelow
Finset.filter
Finset.range
β€”Finset.ext
Finset.filter.congr_simp
not_lt
smoothNumbersUpTo_card_add_roughNumbersUpTo_card πŸ“–mathematicalβ€”Finset.card
smoothNumbersUpTo
roughNumbersUpTo
β€”smoothNumbersUpTo.eq_1
roughNumbersUpTo.eq_1
Finset.card_union_of_disjoint
Finset.disjoint_filter
Finset.filter_union_right
Finset.filter_ne'
Finset.card_erase_of_mem
Finset.mem_range_succ_iff
Finset.card_range
tsub_zero
instOrderedSub
ne_zero_of_mem_smoothNumbers
Finset.filter_congr
smoothNumbersUpTo_card_le πŸ“–mathematicalβ€”Finset.card
smoothNumbersUpTo
Monoid.toNatPow
instMonoid
primesBelow
β€”Finset.card_product
Finset.card_powerset
Finset.card_erase_of_mem
Finset.card_range
tsub_zero
instOrderedSub
LE.le.trans
Finset.card_le_card
smoothNumbersUpTo_subset_image
Finset.card_image_le
smoothNumbersUpTo_subset_image πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
smoothNumbersUpTo
Finset.image
Monoid.toNatPow
instMonoid
Finset.prod
instCommMonoid
SProd.sprod
Finset.instSProd
Finset.powerset
primesBelow
Finset.erase
Finset.range
β€”mem_smoothNumbersUpTo
eq_prod_primes_mul_sq_of_mem_smoothNumbers
Finset.prod_congr
Finset.mem_powerset
ne_zero_of_mem_smoothNumbers
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
isReduced_of_noZeroDivisors
le_sqrt'
LE.le.trans
mul_one
mul_le_mul_right
instMulLeftMono
Finset.one_le_prod'
Prime.one_le
prime_of_mem_primesBelow
smoothNumbers_compl πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instSDiff
Compl.compl
Set.instCompl
smoothNumbers
Set.instSingletonSet
setOf
β€”smoothNumbers_eq_factoredNumbers
factoredNumbers_compl
Finset.filter_subset
smoothNumbers_eq_factoredNumbers πŸ“–mathematicalβ€”smoothNumbers
factoredNumbers
Finset.range
β€”β€”
smoothNumbers_eq_factoredNumbers_primesBelow πŸ“–mathematicalβ€”smoothNumbers
factoredNumbers
primesBelow
β€”smoothNumbers_eq_factoredNumbers
Set.Subset.antisymm
mem_primesBelow
Finset.mem_range
factoredNumbers_mono
Finset.mem_of_mem_filter
smoothNumbers_mono πŸ“–mathematicalβ€”Set
Set.instHasSubset
smoothNumbers
β€”LT.lt.trans_le
smoothNumbers_one πŸ“–mathematicalβ€”smoothNumbers
Set
Set.instSingletonSet
β€”smoothNumbers_succ
smoothNumbers_zero
smoothNumbers_succ πŸ“–mathematicalPrimesmoothNumbersβ€”smoothNumbers_eq_factoredNumbers
Finset.range_add_one
factoredNumbers_insert
smoothNumbers_zero πŸ“–mathematicalβ€”smoothNumbers
Set
Set.instSingletonSet
β€”smoothNumbers_eq_factoredNumbers
factoredNumbers_empty

Nat.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
factoredNumbers_coprime πŸ“–β€”Nat.Prime
Finset
Finset.instMembership
Set
Set.instMembership
Nat.factoredNumbers
β€”β€”coprime_iff_not_dvd
Nat.mem_primeFactorsList_iff_dvd
smoothNumbers_coprime πŸ“–β€”Nat.Prime
Set
Set.instMembership
Nat.smoothNumbers
β€”β€”factoredNumbers_coprime
Finset.notMem_range_self
Nat.smoothNumbers_eq_factoredNumbers

Nat.factoredNumbers

Theorems

NameKindAssumesProvesValidatesDepends On
map_prime_pow_mul πŸ“–mathematicalNat.Prime
Finset
Finset.instMembership
Monoid.toNatPow
Nat.instMonoid
Set
Set.instMembership
Nat.factoredNumbers
β€”Nat.Prime.factoredNumbers_coprime
Subtype.mem

---

← Back to Index