Documentation Verification Report

SumPrimeReciprocals

πŸ“ Source: Mathlib/NumberTheory/SumPrimeReciprocals.lean

Statistics

MetricCount
Definitions0
Theoremsnot_summable_one_div, summable_rpow, roughNumbersUpTo_card_le', not_summable_one_div_on_primes, one_half_le_sum_primes_ge_one_div
5
Total5

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
roughNumbersUpTo_card_le' πŸ“–mathematicalβ€”Real
Real.instLE
Real.instNatCast
Finset.card
roughNumbersUpTo
Real.instMul
Finset.sum
Real.instAddCommMonoid
Finset
Finset.instSDiff
primesBelow
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”Finset.mul_sum
Finset.sum_congr
mul_one_div
LE.le.trans
cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
roughNumbersUpTo_card_le
Finset.sum_le_sum
cast_div_le
Real.instIsStrictOrderedRing
cast_sum

Nat.Primes

Theorems

NameKindAssumesProvesValidatesDepends On
not_summable_one_div πŸ“–mathematicalβ€”Summable
Real
Nat.Primes
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
Nat.Prime
SummationFilter.unconditional
β€”Function.mt
summable_subtype_iff_indicator
not_summable_one_div_on_primes
summable_rpow πŸ“–mathematicalβ€”Summable
Real
Nat.Primes
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instPow
Real.instNatCast
Nat.Prime
SummationFilter.unconditional
Real.instLT
Real.instNeg
Real.instOne
β€”Summable.subtype
instIsUniformAddGroupReal
Real.instCompleteSpace
Real.summable_nat_rpow
not_summable_one_div
Summable.of_nonneg_of_le
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
one_div
Real.rpow_neg_one
Real.rpow_le_rpow_of_exponent_le
RCLike.charZero_rclike
LT.lt.le
Nat.Prime.one_lt
Subtype.prop
not_lt

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
not_summable_one_div_on_primes πŸ“–mathematicalβ€”Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.indicator
Real.instZero
setOf
Nat.Prime
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
SummationFilter.unconditional
β€”Nat.instAtLeastTwoHAddOfNat
Summable.nat_tsum_vanishing
instIsTopologicalAddGroupReal
Iio_mem_nhds
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Set.indicator_indicator
Set.inter_comm
Summable.indicator
instIsUniformAddGroupReal
Real.instCompleteSpace
LT.lt.false
LE.le.trans_lt
one_half_le_sum_primes_ge_one_div
Finset.sum_congr
Finset.mem_sdiff
Set.mem_setOf_eq
Nat.prime_of_mem_primesBelow
Set.indicator_of_mem
Summable.sum_le_tsum
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
Set.indicator_nonneg
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instZeroLEOneClass
Set.mem_Iio
Set.inter_eq_left
tsum_subtype
Set.inter_subset_right
one_half_le_sum_primes_ge_one_div πŸ“–mathematicalβ€”Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Finset.sum
Real.instAddCommMonoid
Finset
Finset.instSDiff
Nat.primesBelow
Monoid.toNatPow
Nat.instMonoid
Finset.card
β€”Nat.instAtLeastTwoHAddOfNat
RCLike.charZero_rclike
Nat.smoothNumbersUpTo_card_add_roughNumbersUpTo_card
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Nat.smoothNumbersUpTo_card_le
le_imp_le_of_le_of_le
add_le_add_right
Nat.roughNumbersUpTo_card_le'
le_refl
Finset.sum_congr
Nat.cast_one
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
NeZero.charZero_one
Nat.instIsStrictOrderedRing
IsStrictOrderedRing.toIsOrderedRing
Nat.instNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Nat.cast_two
Nat.cast_pow
Nat.cast_mul
sub_le_iff_le_add'
Nat.sqrt_eq'
mul_pow
pow_two
mul_assoc
pow_right_comm
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0

---

← Back to Index