Documentation Verification Report

LiouvilleNumber

📁 Source: Mathlib/NumberTheory/Transcendental/Liouville/LiouvilleNumber.lean

Statistics

MetricCount
DefinitionspartialSum, remainder, liouvilleNumber
3
Theoremsaux_calc, partialSum_add_remainder, partialSum_eq_rat, partialSum_succ, remainder_lt, remainder_lt', remainder_pos, remainder_summable, summable, liouville_liouvilleNumber, transcendental_liouvilleNumber
11
Total14

LiouvilleNumber

Definitions

NameCategoryTheorems
partialSum 📖CompOp
3 mathmath: partialSum_eq_rat, partialSum_succ, partialSum_add_remainder
remainder 📖CompOp
4 mathmath: remainder_pos, partialSum_add_remainder, remainder_lt, remainder_lt'

Theorems

NameKindAssumesProvesValidatesDepends On
aux_calc 📖mathematicalReal
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.instInv
Real.instSub
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Nat.factorial
Nat.instAtLeastTwoHAddOfNat
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
sub_one_div_inv_le_two
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
le_of_lt
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
lt_of_lt_of_le
Mathlib.Meta.NormNum.instAtLeastTwo
mul_one_div
mul_comm
pow_mul
div_le_div_iff₀
one_mul
mul_add_one
Distrib.leftDistribClass
pow_add
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
LE.le.trans
le_self_pow₀
Real.instZeroLEOneClass
one_le_two
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ne_of_gt
Nat.factorial_pos
partialSum_add_remainder 📖mathematicalReal
Real.instLT
Real.instOne
Real.instAdd
partialSum
remainder
liouvilleNumber
Summable.sum_add_tsum_nat_add
instIsTopologicalAddGroupReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
summable
partialSum_eq_rat 📖mathematicalpartialSum
Real
Real.instNatCast
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Nat.instMonoid
Nat.factorial
partialSum.eq_1
Finset.range_one
Finset.sum_singleton
Nat.cast_one
Nat.factorial.eq_1
pow_one
partialSum_succ
div_add_div
ne_of_gt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Nat.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
Real.instIsStrictOrderedRing
div_eq_div_iff
mul_pos
add_mul
Distrib.rightDistribClass
one_mul
Nat.factorial_succ
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instIsOrderedAddMonoid
pow_add
mul_assoc
mul_one
partialSum_succ 📖mathematicalpartialSum
Real
Real.instAdd
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Monoid.toNatPow
Real.instMonoid
Nat.factorial
Finset.sum_range_succ
remainder_lt 📖mathematicalReal
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instLT
remainder
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Monoid.toNatPow
Real.instMonoid
Nat.factorial
Nat.instAtLeastTwoHAddOfNat
LT.lt.trans_le
remainder_lt'
one_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
aux_calc
remainder_lt' 📖mathematicalReal
Real.instLT
Real.instOne
remainder
Real.instMul
Real.instInv
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Nat.factorial
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Summable.tsum_lt_tsum
Real.instIsOrderedAddMonoid
instIsTopologicalAddGroupReal
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
one_div_pow_le_one_div_pow_of_le
LT.lt.le
Nat.add_factorial_succ_le_factorial_add_succ
one_div_pow_strictAnti
Nat.add_factorial_succ_lt_factorial_add_succ
le_rfl
remainder_summable
summable_one_div_pow_of_le
le_self_add
Nat.instCanonicallyOrderedAdd
pow_add
one_div
mul_inv
inv_pow
tsum_mul_right
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
tsum_geometric_of_lt_one
le_of_lt
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
lt_trans
remainder_pos 📖mathematicalReal
Real.instLT
Real.instOne
Real.instZero
remainder
Summable.tsum_pos
Real.instIsOrderedAddMonoid
instIsTopologicalAddGroupReal
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
SummationFilter.instLeAtTopUnconditional
SummationFilter.instNeBotUnconditional
remainder_summable
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
lt_trans
remainder_summable 📖mathematicalReal
Real.instLT
Real.instOne
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Nat.factorial
SummationFilter.unconditional
summable_nat_add_iff
instIsTopologicalAddGroupReal
summable
summable 📖mathematicalReal
Real.instLT
Real.instOne
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Nat.factorial
SummationFilter.unconditional
summable_one_div_pow_of_le
Nat.self_le_factorial

(root)

Definitions

NameCategoryTheorems
liouvilleNumber 📖CompOp
3 mathmath: transcendental_liouvilleNumber, LiouvilleNumber.partialSum_add_remainder, liouville_liouvilleNumber

Theorems

NameKindAssumesProvesValidatesDepends On
liouville_liouvilleNumber 📖mathematicalLiouville
liouvilleNumber
Real
Real.instNatCast
Nat.cast_one
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
LiouvilleNumber.partialSum_eq_rat
LT.lt.trans_le
Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
Nat.instIsOrderedAddMonoid
one_lt_pow₀
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Nat.factorial_ne_zero
Int.cast_natCast
Int.cast_pow
LiouvilleNumber.partialSum_add_remainder
Nat.cast_pow
LiouvilleNumber.remainder_pos
AddLeftCancelSemigroup.toIsLeftCancelAdd
LT.lt.ne'
add_sub_cancel_left
abs_of_pos
one_div
LiouvilleNumber.remainder_lt
transcendental_liouvilleNumber 📖mathematicalTranscendental
Real
Int.instCommRing
Real.instRing
Ring.toIntAlgebra
liouvilleNumber
Real.instNatCast
Liouville.transcendental
liouville_liouvilleNumber

---

← Back to Index