Documentation Verification Report

LiouvilleWith

πŸ“ Source: Mathlib/NumberTheory/Transcendental/Liouville/LiouvilleWith.lean

Statistics

MetricCount
DefinitionsLiouvilleWith
1
Theoremsfrequently_exists_num, liouvilleWith, add_int, add_int_iff, add_nat, add_nat_iff, add_rat, add_rat_iff, exists_pos, frequently_lt_rpow_neg, int_add, int_add_iff, int_mul, int_mul_iff, int_sub, int_sub_iff, irrational, mono, mul_int, mul_int_iff, mul_nat, mul_nat_iff, mul_rat, mul_rat_iff, nat_add, nat_add_iff, nat_mul, nat_mul_iff, nat_sub, nat_sub_iff, ne_cast_int, neg, neg_iff, rat_add, rat_add_iff, rat_mul, rat_mul_iff, rat_sub, rat_sub_iff, sub_int, sub_int_iff, sub_nat, sub_nat_iff, sub_rat, sub_rat_iff, forall_liouvilleWith_iff, liouvilleWith_one
47
Total48

Liouville

Theorems

NameKindAssumesProvesValidatesDepends On
frequently_exists_num πŸ“–mathematicalLiouvilleFilter.Frequently
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
Real.instNatCast
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.instSub
Real.instOne
Monoid.toNatPow
Real.instMonoid
Filter.atTop
Nat.instPreorder
β€”instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Mathlib.Tactic.Push.not_and_eq
Nat.one_lt_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
one_div
Filter.Tendsto.comp
tendsto_inv_atTop_zero
Real.instIsStrictOrderedRing
instOrderTopologyReal
tendsto_pow_atTop_atTop_of_one_lt
AddGroup.existsAddOfLE
Real.instArchimedean
Filter.Eventually.mono
Filter.Tendsto.eventually
Irrational.eventually_forall_le_dist_cast_div
irrational
Set.Finite.eventually_all
Set.finite_lt_nat
Filter.eventually_imp_distrib_left
Filter.Eventually.exists
Filter.atTop_neBot
Filter.Eventually.and
Filter.eventually_ge_atTop
CanLift.prf
instCanLiftIntNatCastLeOfNat
LE.le.trans
zero_le_one
Int.instZeroLEOneClass
LT.lt.le
le_or_gt
LE.le.not_gt
Int.cast_natCast
LT.lt.trans_le
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
le_refl
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
NeZero.charZero_one
lt_trans
Nat.instNontrivial
Int.instAddLeftMono
Int.instCharZero
pow_le_pow_rightβ‚€
IsOrderedRing.toPosMulMono
liouvilleWith πŸ“–mathematicalLiouvilleLiouvilleWithβ€”Real.instIsStrictOrderedRing
Filter.Frequently.mono
Filter.Eventually.and_frequently
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
frequently_exists_num
Real.rpow_natCast
LiouvilleWith.mono
Nat.le_ceil

LiouvilleWith

Theorems

NameKindAssumesProvesValidatesDepends On
add_int πŸ“–mathematicalLiouvilleWithReal
Real.instAdd
Real.instIntCast
β€”add_int_iff
add_int_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instAdd
Real.instIntCast
β€”Rat.cast_intCast
add_rat_iff
add_nat πŸ“–mathematicalLiouvilleWithReal
Real.instAdd
Real.instNatCast
β€”add_int
add_nat_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instAdd
Real.instNatCast
β€”Rat.cast_natCast
add_rat_iff
add_rat πŸ“–mathematicalLiouvilleWithReal
Real.instAdd
Real.instRatCast
β€”exists_pos
Filter.Tendsto.frequently
Filter.Tendsto.nsmul_atTop
Nat.instIsOrderedAddMonoid
Filter.tendsto_id
Rat.pos
Filter.Frequently.mono
smul_eq_mul
Rat.num_div_den
Int.cast_add
Int.cast_mul
Int.cast_natCast
Nat.cast_mul
Rat.cast_div
RCLike.charZero_rclike
Rat.cast_intCast
Rat.cast_natCast
add_div
mul_div_mul_left
ne_of_gt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
mul_div_mul_right
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
add_sub_add_right_eq_sub
AddRightCancelSemigroup.toIsRightCancelAdd
LT.lt.trans_le
le_of_eq
Real.rpow_pos_of_pos
Real.mul_rpow
Real.instIsOrderedRing
add_rat_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instAdd
Real.instRatCast
β€”Rat.cast_neg
add_neg_cancel_right
add_rat
exists_pos πŸ“–mathematicalLiouvilleWithFilter.Frequently
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
Real.instNatCast
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.instSub
Real.instPow
Filter.atTop
Nat.instPreorder
β€”LT.lt.trans_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
le_max_right
Filter.Frequently.mono
Filter.Eventually.and_frequently
Filter.eventually_ge_atTop
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
le_max_left
le_of_lt
Real.rpow_pos_of_pos
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
frequently_lt_rpow_neg πŸ“–mathematicalLiouvilleWith
Real
Real.instLT
Filter.Frequently
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instIntCast
Real.instNatCast
abs
Real.lattice
Real.instAddGroup
Real.instSub
Real.instPow
Real.instNeg
Filter.atTop
Nat.instPreorder
β€”exists_pos
Filter.Tendsto.eventually
Filter.Tendsto.comp
tendsto_rpow_atTop
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instNontrivial
Filter.Frequently.mono
Filter.Eventually.and_frequently
Nat.cast_pos
LT.lt.trans
div_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Real.rpow_pos_of_pos
mul_comm
Real.rpow_add
sub_eq_add_neg
int_add πŸ“–mathematicalLiouvilleWithReal
Real.instAdd
Real.instIntCast
β€”int_add_iff
int_add_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instAdd
Real.instIntCast
β€”add_comm
add_int_iff
int_mul πŸ“–mathematicalLiouvilleWithReal
Real.instMul
Real.instIntCast
β€”int_mul_iff
int_mul_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instMul
Real.instIntCast
β€”mul_comm
mul_int_iff
int_sub πŸ“–mathematicalLiouvilleWithReal
Real.instSub
Real.instIntCast
β€”int_sub_iff
int_sub_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instSub
Real.instIntCast
β€”sub_eq_add_neg
irrational πŸ“–mathematicalLiouvilleWith
Real
Real.instLT
Real.instOne
Irrationalβ€”eq_or_ne
ne_cast_int
Rat.cast_zero
Int.cast_zero
mul_rat
inv_ne_zero
Rat.cast_inv
RCLike.charZero_rclike
mul_inv_cancelβ‚€
Rat.cast_ne_zero
Int.cast_one
mono πŸ“–β€”LiouvilleWith
Real
Real.instLE
β€”β€”exists_pos
Filter.Frequently.mono
LT.lt.trans_le
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
le_refl
Real.rpow_pos_of_pos
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Real.rpow_le_rpow_of_exponent_le
Nat.cast_one
mul_int πŸ“–mathematicalLiouvilleWithReal
Real.instMul
Real.instIntCast
β€”mul_int_iff
mul_int_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instMul
Real.instIntCast
β€”Rat.cast_intCast
mul_rat_iff
Int.cast_ne_zero
Rat.instCharZero
mul_nat πŸ“–mathematicalLiouvilleWithReal
Real.instMul
Real.instNatCast
β€”mul_nat_iff
mul_nat_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instMul
Real.instNatCast
β€”Rat.cast_natCast
mul_rat_iff
Nat.cast_ne_zero
Rat.instCharZero
mul_rat πŸ“–mathematicalLiouvilleWithReal
Real.instMul
Real.instRatCast
β€”exists_pos
Filter.Tendsto.frequently
Filter.Tendsto.nsmul_atTop
Nat.instIsOrderedAddMonoid
Filter.tendsto_id
Rat.pos
Filter.Frequently.mono
mul_comm
Int.cast_mul
Nat.cast_mul
Rat.cast_def
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
RCLike.charZero_rclike
sub_mul
abs_mul
Real.instIsOrderedRing
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.abs_pos_of_ne_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Rat.cast_ne_zero
Real.mul_rpow
le_of_lt
Nat.cast_pos'
Real.instZeroLEOneClass
NeZero.charZero_one
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
mul_div_mul_left
ne_of_gt
Real.rpow_pos_of_pos
mul_div_assoc
Rat.cast_abs
mul_rat_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instMul
Real.instRatCast
β€”mul_assoc
RCLike.charZero_rclike
mul_inv_cancelβ‚€
Rat.cast_one
mul_one
mul_rat
inv_ne_zero
nat_add πŸ“–mathematicalLiouvilleWithReal
Real.instAdd
Real.instNatCast
β€”int_add
nat_add_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instAdd
Real.instNatCast
β€”add_comm
add_nat_iff
nat_mul πŸ“–mathematicalLiouvilleWithReal
Real.instMul
Real.instNatCast
β€”mul_comm
mul_nat
nat_mul_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instMul
Real.instNatCast
β€”mul_comm
mul_nat_iff
nat_sub πŸ“–mathematicalLiouvilleWithReal
Real.instSub
Real.instNatCast
β€”nat_sub_iff
nat_sub_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instSub
Real.instNatCast
β€”sub_eq_add_neg
ne_cast_int πŸ“–β€”LiouvilleWith
Real
Real.instLT
Real.instOne
β€”β€”Filter.Frequently.exists
Filter.Eventually.and_frequently
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
frequently_lt_rpow_neg
LT.lt.not_ge
Real.instIsOrderedRing
Real.instNontrivial
Real.rpow_neg_one
one_div
sub_div'
LT.lt.ne'
abs_div
Real.instIsStrictOrderedRing
Nat.abs_cast
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_one
Int.cast_natCast
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
zero_add
abs_pos
Int.instAddLeftMono
sub_ne_zero
eq_div_iff
le_of_lt
Nat.cast_pos'
neg πŸ“–mathematicalLiouvilleWithReal
Real.instNeg
β€”Filter.Frequently.mono
Int.cast_neg
neg_div
abs_sub_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
neg_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instNeg
β€”neg
neg_neg
rat_add πŸ“–mathematicalLiouvilleWithReal
Real.instAdd
Real.instRatCast
β€”add_rat
add_comm
rat_add_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instAdd
Real.instRatCast
β€”add_comm
add_rat_iff
rat_mul πŸ“–mathematicalLiouvilleWithReal
Real.instMul
Real.instRatCast
β€”rat_mul_iff
rat_mul_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instMul
Real.instRatCast
β€”mul_comm
mul_rat_iff
rat_sub πŸ“–mathematicalLiouvilleWithReal
Real.instSub
Real.instRatCast
β€”rat_sub_iff
rat_sub_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instSub
Real.instRatCast
β€”sub_eq_add_neg
sub_int πŸ“–mathematicalLiouvilleWithReal
Real.instSub
Real.instIntCast
β€”sub_int_iff
sub_int_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instSub
Real.instIntCast
β€”Rat.cast_intCast
sub_rat_iff
sub_nat πŸ“–mathematicalLiouvilleWithReal
Real.instSub
Real.instNatCast
β€”sub_nat_iff
sub_nat_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instSub
Real.instNatCast
β€”Rat.cast_natCast
sub_rat_iff
sub_rat πŸ“–mathematicalLiouvilleWithReal
Real.instSub
Real.instRatCast
β€”sub_rat_iff
sub_rat_iff πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instSub
Real.instRatCast
β€”sub_eq_add_neg
Rat.cast_neg
add_rat_iff

(root)

Definitions

NameCategoryTheorems
LiouvilleWith πŸ“–MathDef
24 mathmath: LiouvilleWith.nat_sub_iff, volume_iUnion_setOf_liouvilleWith, LiouvilleWith.rat_sub_iff, LiouvilleWith.rat_add_iff, LiouvilleWith.mul_int_iff, LiouvilleWith.neg_iff, setOf_liouvilleWith_subset_aux, LiouvilleWith.int_sub_iff, LiouvilleWith.add_rat_iff, LiouvilleWith.add_int_iff, Liouville.liouvilleWith, LiouvilleWith.int_add_iff, LiouvilleWith.sub_int_iff, forall_liouvilleWith_iff, LiouvilleWith.rat_mul_iff, LiouvilleWith.mul_rat_iff, LiouvilleWith.int_mul_iff, LiouvilleWith.sub_nat_iff, liouvilleWith_one, LiouvilleWith.sub_rat_iff, LiouvilleWith.mul_nat_iff, LiouvilleWith.nat_add_iff, LiouvilleWith.add_nat_iff, LiouvilleWith.nat_mul_iff

Theorems

NameKindAssumesProvesValidatesDepends On
forall_liouvilleWith_iff πŸ“–mathematicalβ€”LiouvilleWith
Liouville
β€”Filter.Frequently.exists
Filter.Eventually.and_frequently
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
LiouvilleWith.frequently_lt_rpow_neg
lt_add_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_one
Int.instAddLeftMono
Int.instZeroLEOneClass
Int.instCharZero
Int.cast_natCast
one_div
Real.rpow_neg
Real.instIsOrderedRing
Real.rpow_natCast
Liouville.liouvilleWith
liouvilleWith_one πŸ“–mathematicalβ€”LiouvilleWith
Real
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Filter.Eventually.frequently
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Eventually.mono
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Real.instIsOrderedRing
Real.instNontrivial
lt_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Int.cast_add
Int.cast_one
Int.lt_floor_add_one
LT.lt.ne
abs_sub_comm
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Real.rpow_one
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_div_eq_mul_add_div
LT.lt.ne'
div_lt_div_of_pos_right
add_le_add_left
Int.floor_le
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_pos'
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike

---

← Back to Index