Documentation Verification Report

WellApproximable

๐Ÿ“ Source: Mathlib/NumberTheory/WellApproximable.lean

Statistics

MetricCount
DefinitionsaddWellApproximable, approxAddOrderOf, approxOrderOf, wellApproximable
4
TheoremsaddWellApproximable_ae_empty_or_univ, exists_norm_nsmul_le, exists_norm_nsmul_le, mem_addWellApproximable_iff, mem_approxAddOrderOf_iff, image_nsmul_subset, image_nsmul_subset_of_coprime, vadd_eq_of_mul_dvd, vadd_subset_of_coprime, image_pow_subset, image_pow_subset_of_coprime, smul_eq_of_mul_dvd, smul_subset_of_coprime, mem_add_wellApproximable_iff, mem_approxOrderOf_iff, mem_approx_add_orderOf_iff, mem_wellApproximable_iff
17
Total21

AddCircle

Theorems

NameKindAssumesProvesValidatesDepends On
addWellApproximable_ae_empty_or_univ ๐Ÿ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Filter.Eventually
AddCircle
Real.instAddCommGroup
addWellApproximable
SeminormedAddCommGroup.toSeminormedAddGroup
QuotientAddGroup.instSeminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
AddSubgroup.zmultiples
AddCommGroup.toAddGroup
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.MeasureSpace.volume
โ€”MeasureTheory.Measure.instOuterMeasureClass
addOrderOf_div_of_gcd_eq_one
Real.instIsStrictOrderedRing
Nat.Prime.pos
gcd_one_left
Monotone.tendsto_atTop_atTop
Nat.exists_infinite_primes
MeasurableSet.measurableSet_blimsup
IsOpen.measurableSet
BorelSpace.opensMeasurable
QuotientAddGroup.borelSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Real.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
instIsTopologicalAddGroupReal
Real.borelSpace
AddSubgroup.normal_of_comm
AddSubgroup.isClosed_of_discrete
TopologicalSpace.t2Space_of_metrizableSpace
Int.instDiscreteTopologySubtypeRealMemAddSubgroupZmultiples
Metric.isOpen_thickening
MeasurableSet.nullMeasurableSet
sq
MeasureTheory.union_ae_eq_right_of_ae_eq_empty
Filter.EventuallyEq.trans
LE.le.trans
sSupHom.apply_blimsup_le
Filter.mono_blimsup
Nat.Prime.coprime_iff_not_dvd
approxAddOrderOf.image_nsmul_subset_of_coprime
Ergodic.ae_empty_or_univ_of_image_ae_le
isFiniteMeasure
ergodic_nsmul
Nat.Prime.one_lt
Filter.EventuallyLE.congr
HasSubset.Subset.eventuallyLE
Filter.EventuallyEq.rfl
blimsup_thickening_mul_ae_eq
QuotientAddGroup.instSecondCountableTopology
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
QuotientAddGroup.instLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
MeasureTheory.Measure.IsAddHaarMeasure.toIsFiniteMeasureOnCompacts
instIsAddHaarMeasureRealVolume
instIsUnifLocDoublingMeasureRealVolume
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
mul_dvd_mul_left
add_comm
sSupHom.setImage_toFun
Set.image_comp
Set.monotone_image
approxAddOrderOf.image_nsmul_subset
mul_comm
approxAddOrderOf.vadd_subset_of_coprime
ergodic_nsmul_add
Filter.eventuallyEq_empty
Filter.eventuallyEq_univ
OrderIso.apply_blimsup
Filter.blimsup_congr
Filter.Eventually.of_forall
approxAddOrderOf.vadd_eq_of_mul_dvd
MeasureTheory.MeasurePreserving.quasiMeasurePreserving
MeasureTheory.measurePreserving_vadd
MeasurableVAdd.toMeasurableConstVAdd
measurableVAdd_of_add
ContinuousAdd.measurableAdd
IsTopologicalAddGroup.toContinuousAdd
QuotientAddGroup.instIsTopologicalAddGroup
MeasureTheory.Measure.IsAddLeftInvariant.vaddInvariantMeasure
MeasureTheory.Measure.IsAddHaarMeasure.toIsAddLeftInvariant
MeasureTheory.Measure.QuasiMeasurePreserving.vadd_ae_eq_of_ae_eq
MeasureTheory.ae_eq_trans
Filter.EventuallyEq.refl
Filter.EventuallyEq.symm
ae_empty_or_univ_of_forall_vadd_ae_eq_self
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_or_eq
exists_norm_nsmul_le ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
Set.Icc
Nat.instPreorder
Real
Real.instLE
Norm.norm
AddCircle
Real.instAddCommGroup
QuotientAddGroup.instNorm
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
AddSubgroup.zmultiples
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroupReal
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
โ€”NormedAddCommGroup.exists_norm_nsmul_le
compactSpace
ConnectedSpace.toPreconnectedSpace
PathConnectedSpace.connectedSpace
pathConnectedSpace
QuotientAddGroup.borelSpace
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
Real.instCompleteSpace
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
instIsTopologicalAddGroupReal
Real.borelSpace
AddSubgroup.normal_of_comm
AddSubgroup.isClosed_of_discrete
TopologicalSpace.t2Space_of_metrizableSpace
Int.instDiscreteTopologySubtypeRealMemAddSubgroupZmultiples
instIsAddHaarMeasureRealVolume
Nat.instAtLeastTwoHAddOfNat
measure_univ
volume_closedBall
ENNReal.ofReal_nsmul
mul_div_cancelโ‚€
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
min_eq_right
div_le_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
LT.lt.le
Fact.out
Nat.cast_add
Nat.cast_one
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Real.instIsOrderedRing
nsmul_eq_mul
Nat.cast_ne_zero
le_refl

NormedAddCommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
exists_norm_nsmul_le ๐Ÿ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
Set.univ
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
ENNReal.instTopologicalSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
instENormedAddCommMonoidENNReal
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
toAddCommGroup
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.instMembership
Set.Icc
Nat.instPreorder
Real.instLE
Norm.norm
toNorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
toENormedAddCommMonoid
โ€”Nat.instAtLeastTwoHAddOfNat
Metric.isClosed_closedBall
LT.lt.ne'
IsClosed.measure_eq_univ_iff_eq
MeasureTheory.Measure.IsAddHaarMeasure.toIsOpenPosMeasure
BorelSpace.opensMeasurable
MeasureTheory.CompactSpace.isFiniteMeasure
MeasureTheory.Measure.IsAddHaarMeasure.toIsFiniteMeasureOnCompacts
isClosed_iUnion_of_finite
Finite.of_fintype
le_antisymm
MeasureTheory.OuterMeasure.mono
Set.subset_univ
MeasureTheory.measure_iUnion
SetCoe.countable
instCountableNat
measurableSet_closedBall
tsum_fintype
SummationFilter.instLeAtTopUnconditional
Finset.sum_congr
MeasureTheory.Measure.addHaar_closedBall_center
Finset.sum_const
Fintype.card_Icc
Nat.card_Icc
tsub_zero
Nat.instOrderedSub
LT.lt.not_ge
IsOpen.measure_pos
isOpen_univ
Set.univ_nonempty
AddTorsor.nonempty
LE.le.trans
Metric.closedBall_eq_empty
not_le
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
nsmul_zero
Metric.nonempty_closedBall
Nat.instCanonicallyOrderedAdd
subsingleton_of_disjoint_isClosed_iUnion_eq_univ
exists_lt_mem_inter_of_not_pairwise_disjoint
le_tsub_of_add_le_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_self_add
sub_nsmul
Subtype.coe_le_coe
LT.lt.le
sub_eq_add_neg
dist_eq_norm
dist_triangle
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Metric.mem_closedBall
Metric.mem_closedBall'

UnitAddCircle

Theorems

NameKindAssumesProvesValidatesDepends On
mem_addWellApproximable_iff ๐Ÿ“–mathematicalโ€”UnitAddCircle
Set
Set.instMembership
addWellApproximable
SeminormedAddCommGroup.toSeminormedAddGroup
QuotientAddGroup.instSeminormedAddCommGroup
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
AddSubgroup.zmultiples
AddCommGroup.toAddGroup
Real.instAddCommGroup
Real.instOne
Set.Infinite
setOf
GCDMonoid.gcd
Nat.instCommMonoidWithZero
instGCDMonoidNat
Real.instLT
Norm.norm
QuotientAddGroup.instNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
QuotientAddGroup.Quotient.addGroup
AddSubgroup.normal_of_comm
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
โ€”AddSubgroup.normal_of_comm
Filter.cofinite.blimsup_set_eq
Set.ext
mem_approxAddOrderOf_iff
pos_of_gt
Nat.instCanonicallyOrderedAdd
mem_approxAddOrderOf_iff ๐Ÿ“–mathematicalโ€”UnitAddCircle
Set
Set.instMembership
approxAddOrderOf
SeminormedAddCommGroup.toSeminormedAddGroup
QuotientAddGroup.instSeminormedAddCommGroup
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
AddSubgroup.zmultiples
AddCommGroup.toAddGroup
Real.instAddCommGroup
Real.instOne
GCDMonoid.gcd
Nat.instCommMonoidWithZero
instGCDMonoidNat
Real.instLT
Norm.norm
QuotientAddGroup.instNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
QuotientAddGroup.Quotient.addGroup
AddSubgroup.normal_of_comm
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
โ€”AddSubgroup.normal_of_comm
AddCircle.addOrderOf_eq_pos_iff
Real.instIsStrictOrderedRing
ZeroLEOneClass.factZeroLtOne
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
mul_one
dist_eq_norm

(root)

Definitions

NameCategoryTheorems
addWellApproximable ๐Ÿ“–CompOp
3 mathmath: mem_add_wellApproximable_iff, AddCircle.addWellApproximable_ae_empty_or_univ, UnitAddCircle.mem_addWellApproximable_iff
approxAddOrderOf ๐Ÿ“–CompOp
7 mathmath: approxAddOrderOf.vadd_eq_of_mul_dvd, mem_approx_add_orderOf_iff, mem_add_wellApproximable_iff, UnitAddCircle.mem_approxAddOrderOf_iff, approxAddOrderOf.image_nsmul_subset, approxAddOrderOf.image_nsmul_subset_of_coprime, approxAddOrderOf.vadd_subset_of_coprime
approxOrderOf ๐Ÿ“–CompOp
6 mathmath: mem_approxOrderOf_iff, approxOrderOf.image_pow_subset_of_coprime, approxOrderOf.smul_subset_of_coprime, mem_wellApproximable_iff, approxOrderOf.image_pow_subset, approxOrderOf.smul_eq_of_mul_dvd
wellApproximable ๐Ÿ“–CompOp
1 mathmath: mem_wellApproximable_iff

Theorems

NameKindAssumesProvesValidatesDepends On
mem_add_wellApproximable_iff ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
addWellApproximable
Filter.blimsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
approxAddOrderOf
Filter.atTop
Nat.instPreorder
โ€”โ€”
mem_approxOrderOf_iff ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
approxOrderOf
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SeminormedGroup.toGroup
Metric.ball
SeminormedGroup.toPseudoMetricSpace
โ€”Metric.thickening_eq_biUnion_ball
mem_approx_add_orderOf_iff ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
approxAddOrderOf
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
Metric.ball
SeminormedAddGroup.toPseudoMetricSpace
โ€”Metric.thickening_eq_biUnion_ball
Set.mem_iUnionโ‚‚
mem_wellApproximable_iff ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
wellApproximable
Filter.blimsup
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
approxOrderOf
Filter.atTop
Nat.instPreorder
โ€”โ€”

approxAddOrderOf

Theorems

NameKindAssumesProvesValidatesDepends On
image_nsmul_subset ๐Ÿ“–mathematicalโ€”Set
Set.instHasSubset
Set.image
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
approxAddOrderOf
Real
Real.instMul
Real.instNatCast
โ€”mem_approx_add_orderOf_iff
Set.mem_setOf_eq
addOrderOf_nsmul'
LT.lt.ne'
Metric.ball_subset_thickening
nsmul_eq_mul
nsmul_mem_ball
image_nsmul_subset_of_coprime ๐Ÿ“–mathematicalโ€”Set
Set.instHasSubset
Set.image
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
approxAddOrderOf
Real
Real.instMul
Real.instNatCast
โ€”mem_approx_add_orderOf_iff
Nat.Coprime.addOrderOf_nsmul
Metric.ball_subset_thickening
nsmul_eq_mul
nsmul_mem_ball
vadd_eq_of_mul_dvd ๐Ÿ“–mathematicalMonoid.toNatPow
Nat.instMonoid
addOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
approxAddOrderOf
โ€”Metric.thickening_eq_biUnion_ball
Set.image_iUnionโ‚‚
Set.iUnion_congr_Prop
vadd_ball''
AddCommute.addOrderOf_add_eq_right_of_forall_prime_mul_dvd
AddCommute.all
addOrderOf_pos_iff
dvd_trans
mul_dvd_mul_right
sq
Set.mem_setOf_eq
addOrderOf_neg
neg_add_rev
neg_neg
add_comm
add_neg_cancel_left
Set.iUnion_coe_set
Function.Surjective.iUnion_comp
vadd_subset_of_coprime ๐Ÿ“–mathematicaladdOrderOf
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
Set
Set.instHasSubset
HVAdd.hVAdd
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
approxAddOrderOf
โ€”Metric.thickening_eq_biUnion_ball
Set.image_iUnionโ‚‚
Set.iUnion_congr_Prop
vadd_ball''
Set.iUnionโ‚‚_subset_iff
Set.mem_iUnion
AddCommute.addOrderOf_add_eq_mul_addOrderOf_of_coprime
AddCommute.all

approxOrderOf

Theorems

NameKindAssumesProvesValidatesDepends On
image_pow_subset ๐Ÿ“–mathematicalโ€”Set
Set.instHasSubset
Set.image
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SeminormedGroup.toGroup
SeminormedCommGroup.toSeminormedGroup
approxOrderOf
Real
Real.instMul
Real.instNatCast
โ€”mem_approxOrderOf_iff
Set.mem_setOf_eq
orderOf_pow'
LT.lt.ne'
Metric.ball_subset_thickening
nsmul_eq_mul
pow_mem_ball
image_pow_subset_of_coprime ๐Ÿ“–mathematicalโ€”Set
Set.instHasSubset
Set.image
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SeminormedGroup.toGroup
SeminormedCommGroup.toSeminormedGroup
approxOrderOf
Real
Real.instMul
Real.instNatCast
โ€”mem_approxOrderOf_iff
Nat.Coprime.orderOf_pow
Metric.ball_subset_thickening
nsmul_eq_mul
pow_mem_ball
smul_eq_of_mul_dvd ๐Ÿ“–mathematicalMonoid.toNatPow
Nat.instMonoid
orderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SeminormedGroup.toGroup
SeminormedCommGroup.toSeminormedGroup
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
approxOrderOf
โ€”Metric.thickening_eq_biUnion_ball
Set.image_iUnionโ‚‚
Set.iUnion_congr_Prop
smul_ball''
Commute.orderOf_mul_eq_right_of_forall_prime_mul_dvd
Commute.all
orderOf_pos_iff
dvd_trans
mul_dvd_mul_right
sq
Set.mem_setOf_eq
orderOf_inv
mul_inv_rev
inv_inv
mul_comm
mul_inv_cancel_left
Set.iUnion_coe_set
Function.Surjective.iUnion_comp
smul_subset_of_coprime ๐Ÿ“–mathematicalorderOf
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SeminormedGroup.toGroup
SeminormedCommGroup.toSeminormedGroup
Set
Set.instHasSubset
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
approxOrderOf
โ€”Metric.thickening_eq_biUnion_ball
Set.image_iUnionโ‚‚
Set.iUnion_congr_Prop
smul_ball''
Set.iUnionโ‚‚_subset_iff
Commute.orderOf_mul_eq_mul_orderOf_of_coprime
Commute.all

---

โ† Back to Index