📁 Source: Mathlib/NumberTheory/Wilson.lean
prime_iff_fac_equiv_neg_one
prime_of_fac_equiv_neg_one
prod_Ico_one_prime
wilsons_lemma
Prime
ZMod
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
factorial
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
ZMod.wilsons_lemma
eq_or_ne
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_natSub
Mathlib.Meta.NormNum.isNat_ofNat
cast_one
Mathlib.Meta.NormNum.isInt_eq_false
ZMod.charZero
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isInt_neg
two_le_iff
exists_dvd_of_not_prime2
dvd_factorial
pos_of_gt
instCanonicallyOrderedAdd
LT.lt.ne'
Dvd.dvd.trans
ZMod.natCast_eq_zero_iff
cast_add
neg_add_cancel
Finset.prod
CommRing.toCommMonoid
commRing
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
DivisionRing.toRing
Field.toDivisionRing
instField
Nat.Prime.pos
Fact.out
Finset.prod_natCast
Finset.prod_Ico_id_eq_factorial
Nat.factorial
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Finset.prod_bij
Finset.mem_Ico
val_zero
Units.ne_zero
nontrivial
val_injective
val_lt
Units.ext_iff
pos_iff_ne_zero
val_cast_of_lt
Finset.mem_univ
natCast_val
cast_id
Finset.prod_congr
map_prod
MonoidHom.instMonoidHomClass
FiniteField.prod_univ_units_id_eq_neg_one
instIsDomain
---
← Back to Index