| Metric | Count |
DefinitionsZsqrtd, Nonneg, Nonnegg, Nonsquare, SqLe, addCommGroup, addGroupWithOne, commRing, decidableLE, decidableNonneg, decidableNonnegg, im, instAdd, instAddCommSemigroup, instAddMonoid, instAddSemigroup, instCommMonoid, instCommSemigroup, instCommSemiring, instDistrib, instInhabited, instLECastInt, instLTCastInt, instMonoid, instMul, instNeg, instOne, instRing, instSemigroup, instSemiring, instStar, instStarRing, instZero, linearOrder, norm, normMonoidHom, ofInt, preorder, re, sqrtd, instDecidableEqZsqrtd, decEq, Β«termβ€β_Β» | 43 |
Theoremsadd, ns, ns', abs_norm, add_def, add_im, add_le_add_left, add_lt_add_left, add_re, d_pos, decompose, divides_sq_eq_zero, divides_sq_eq_zero_z, dmuld, eq_of_smul_eq_smul_left, eq_zero_or_eq_zero_of_mul_eq_zero, exists_coprime_of_gcd_pos, ext, ext_iff, gcd_eq_zero_iff, gcd_pos_iff, hom_ext, hom_ext_iff, im_add, im_intCast, im_mul, im_natCast, im_neg, im_ofInt, im_ofNat, im_one, im_smul, im_sqrtd, im_star, im_sub, im_zero, instCharZero, instIsDomainCastInt, instIsOrderedAddMonoidCastInt, instIsStrictOrderedRingCastInt, instNoZeroDivisorsCastInt, instZeroLEOneClassCastInt, intCast_dvd, intCast_dvd_intCast, intCast_im, intCast_re, intCast_val, isCoprime_of_dvd_isCoprime, isUnit_iff_norm_isUnit, le_antisymm, le_arch, le_of_add_le_add_left, le_of_le_le, le_total, lift_apply_apply, lift_injective, lift_symm_apply_coe, mker_norm_eq_unitary, mul_im, mul_nonneg, mul_pos, mul_re, mul_star, muld_val, natCast_im, natCast_re, natCast_val, neg_im, neg_re, nonneg_add_lem, nonneg_antisymm, nonneg_cases, nonneg_iff_zero_le, nonneg_mul, nonneg_mul_lem, nonneg_muld, nonneg_smul, nonneg_total, nonnegg_cases_left, nonnegg_cases_right, nonnegg_comm, nonnegg_neg_pos, nonnegg_pos_neg, nontrivial, norm_conj, norm_def, norm_eq_mul_conj, norm_eq_of_associated, norm_eq_one_iff, norm_eq_one_iff', norm_eq_one_iff_mem_unitary, norm_eq_zero, norm_eq_zero_iff, norm_intCast, norm_mul, norm_natCast, norm_neg, norm_nonneg, norm_one, norm_zero, not_divides_sq, not_sqLe_succ, nsmul_val, ofInt_eq_intCast, ofInt_im, ofInt_re, ofNat_im, ofNat_re, one_im, one_re, re_add, re_intCast, re_mul, re_natCast, re_neg, re_ofInt, re_ofNat, re_one, re_smul, re_sqrtd, re_star, re_sub, re_zero, smul_im, smul_re, smul_val, smuld_val, sqLe_add, sqLe_add_mixed, sqLe_cancel, sqLe_mul, sqLe_of_le, sqLe_smul, sqrtd_im, sqrtd_re, star_im, star_mk, star_re, sub_im, sub_re, zero_im, zero_re | 142 |
| Total | 185 |
| Name | Category | Theorems |
Nonneg π | MathDef | 2 mathmath: nonneg_total, nonneg_iff_zero_le
|
Nonnegg π | MathDef | 5 mathmath: nonnegg_comm, nonnegg_cases_left, nonnegg_cases_right, nonnegg_neg_pos, nonnegg_pos_neg
|
Nonsquare π | CompData | 1 mathmath: Pell.dnsq
|
SqLe π | MathDef | 4 mathmath: not_sqLe_succ, sqLe_mul, nonnegg_neg_pos, nonnegg_pos_neg
|
addCommGroup π | CompOp | 4 mathmath: im_sub, re_sub, sub_im, sub_re
|
addGroupWithOne π | CompOp | 35 mathmath: nonneg_smul, exists_coprime_of_gcd_pos, im_smul, intCast_im, re_intCast, le_arch, re_smul, natCast_im, GaussianInt.toComplex_sub, Pell.pellZd_succ_succ, ofInt_eq_intCast, smuld_val, nsmul_val, norm_eq_mul_conj, instCharZero, norm_intCast, intCast_dvd_intCast, intCast_val, mul_star, decompose, natCast_val, im_intCast, smul_val, GaussianInt.prime_of_nat_prime_of_mod_four_eq_three, norm_natCast, intCast_dvd, re_natCast, smul_im, dmuld, intCast_re, im_natCast, GaussianInt.mod_def, smul_re, GaussianInt.prime_iff_mod_four_eq_three_of_nat_prime, natCast_re
|
commRing π | CompOp | 6 mathmath: Pell.is_pell_solution_iff_mem_unitary, mker_norm_eq_unitary, Pell.Solutionβ.coe_mk, Pell.isPell_iff_mem_unitary, instIsOrderedAddMonoidCastInt, norm_eq_one_iff_mem_unitary
|
decidableLE π | CompOp | β |
decidableNonneg π | CompOp | β |
decidableNonnegg π | CompOp | β |
im π | CompOp | 44 mathmath: norm_def, ofInt_im, GaussianInt.natAbs_norm_eq, GaussianInt.intCast_im, im_sub, re_mul, im_ofNat, GaussianInt.toComplex_defβ, Pell.is_pell_solution_iff_mem_unitary, gcd_pos_iff, im_star, im_add, im_smul, intCast_im, mul_im, star_im, im_sqrtd, natCast_im, one_im, GaussianInt.toComplex_def, zero_im, GaussianInt.div_def, lift_apply_apply, GaussianInt.to_real_im, ofNat_im, add_im, im_zero, sub_im, im_one, im_intCast, intCast_dvd, Pell.im_pellZd, smul_im, im_mul, im_ofInt, toReal_apply, ext_iff, gcd_eq_zero_iff, im_natCast, sqrtd_im, Pell.pellZd_im, mul_re, im_neg, neg_im
|
instAdd π | CompOp | 12 mathmath: im_add, add_re, GaussianInt.toComplex_add, Pell.pellZd_succ_succ, nonneg_add_lem, Nonneg.add, add_im, decompose, add_def, re_add, add_le_add_left, add_lt_add_left
|
instAddCommSemigroup π | CompOp | β |
instAddMonoid π | CompOp | β |
instAddSemigroup π | CompOp | β |
instCommMonoid π | CompOp | β |
instCommSemigroup π | CompOp | β |
instCommSemiring π | CompOp | 2 mathmath: GaussianInt.prime_of_nat_prime_of_mod_four_eq_three, GaussianInt.prime_iff_mod_four_eq_three_of_nat_prime
|
instDistrib π | CompOp | β |
instInhabited π | CompOp | β |
instLECastInt π | CompOp | 5 mathmath: le_arch, le_total, instZeroLEOneClassCastInt, nonneg_iff_zero_le, le_of_le_le
|
instLTCastInt π | CompOp | β |
instMonoid π | CompOp | 8 mathmath: Pell.is_pell_solution_iff_mem_unitary, norm_eq_one_iff, mker_norm_eq_unitary, Pell.Solutionβ.coe_mk, norm_eq_one_iff', Pell.isPell_iff_mem_unitary, isUnit_iff_norm_isUnit, norm_eq_one_iff_mem_unitary
|
instMul π | CompOp | 35 mathmath: GaussianInt.toComplex_mul, nonneg_smul, re_mul, exists_coprime_of_gcd_pos, Pell.isPell_mul, Pell.pellZd_sub, muld_val, Pell.isPell_norm, instNoZeroDivisorsCastInt, Pell.pellZd_succ, GaussianInt.norm_le_norm_mul_left, im_smul, nonneg_mul_lem, mul_im, norm_mul, re_smul, mul_pos, Pell.pellZd_succ_succ, GaussianInt.div_def, smuld_val, nsmul_val, norm_eq_mul_conj, nonneg_mul, mul_star, decompose, smul_val, nonneg_muld, Pell.pellZd_add, smul_im, im_mul, dmuld, GaussianInt.mod_def, smul_re, mul_re, mul_nonneg
|
instNeg π | CompOp | 7 mathmath: re_neg, nonneg_total, neg_re, norm_neg, GaussianInt.toComplex_neg, im_neg, neg_im
|
instOne π | CompOp | 8 mathmath: norm_one, one_re, Pell.isPell_norm, one_im, instZeroLEOneClassCastInt, re_one, im_one, GaussianInt.toComplex_one
|
instRing π | CompOp | β |
instSemigroup π | CompOp | 2 mathmath: intCast_dvd_intCast, intCast_dvd
|
instSemiring π | CompOp | 37 mathmath: GaussianInt.toComplex_mul, instIsDomainCastInt, GaussianInt.intCast_im, GaussianInt.toComplex_def', instIsStrictOrderedRingCastInt, GaussianInt.toComplex_defβ, GaussianInt.toComplex_div_re, hom_ext_iff, GaussianInt.toComplex_injective, mker_norm_eq_unitary, GaussianInt.toComplex_im_div, lift_symm_apply_coe, GaussianInt.toComplex_add, GaussianInt.toComplex_sub, GaussianInt.toComplex_star, GaussianInt.toComplex_def, GaussianInt.to_real_re, lift_apply_apply, GaussianInt.to_real_im, GaussianInt.toComplex_re_div, GaussianInt.toComplex_re, GaussianInt.toComplex_inj, GaussianInt.intCast_real_norm, GaussianInt.toComplex_im, GaussianInt.im_toComplex, GaussianInt.toComplex_neg, GaussianInt.re_toComplex, GaussianInt.toComplex_zero, toReal_apply, lift_injective, GaussianInt.toComplex_one, GaussianInt.normSq_div_sub_div_lt_one, GaussianInt.intCast_complex_norm, GaussianInt.intCast_re, GaussianInt.toComplex_div_im, GaussianInt.toComplex_eq_zero, toReal_injective
|
instStar π | CompOp | 13 mathmath: Pell.pellZd_sub, im_star, Pell.isPell_norm, norm_conj, star_mk, star_im, GaussianInt.toComplex_star, GaussianInt.div_def, norm_eq_mul_conj, re_star, mul_star, Pell.isPell_star, star_re
|
instStarRing π | CompOp | 5 mathmath: Pell.is_pell_solution_iff_mem_unitary, mker_norm_eq_unitary, Pell.Solutionβ.coe_mk, Pell.isPell_iff_mem_unitary, norm_eq_one_iff_mem_unitary
|
instZero π | CompOp | 15 mathmath: norm_eq_zero, GaussianInt.norm_eq_zero, re_zero, instNoZeroDivisorsCastInt, zero_im, instZeroLEOneClassCastInt, im_zero, nonneg_iff_zero_le, norm_zero, zero_re, GaussianInt.toComplex_zero, norm_eq_zero_iff, gcd_eq_zero_iff, nonneg_antisymm, GaussianInt.toComplex_eq_zero
|
linearOrder π | CompOp | 2 mathmath: instIsStrictOrderedRingCastInt, instIsOrderedAddMonoidCastInt
|
norm π | CompOp | 30 mathmath: norm_def, GaussianInt.natAbs_norm_eq, GaussianInt.norm_pos, norm_eq_zero, norm_one, abs_norm, GaussianInt.norm_eq_zero, GaussianInt.natCast_natAbs_norm, norm_eq_one_iff, GaussianInt.natAbs_norm_mod_lt, norm_eq_one_iff', GaussianInt.norm_le_norm_mul_left, norm_conj, norm_mul, norm_eq_of_associated, GaussianInt.div_def, norm_eq_mul_conj, norm_intCast, norm_neg, GaussianInt.intCast_real_norm, GaussianInt.norm_mod_lt, norm_zero, norm_nonneg, norm_natCast, norm_eq_zero_iff, isUnit_iff_norm_isUnit, norm_eq_one_iff_mem_unitary, GaussianInt.norm_nonneg, GaussianInt.abs_natCast_norm, GaussianInt.intCast_complex_norm
|
normMonoidHom π | CompOp | 1 mathmath: mker_norm_eq_unitary
|
ofInt π | CompOp | 5 mathmath: ofInt_im, ofInt_re, re_ofInt, ofInt_eq_intCast, im_ofInt
|
preorder π | CompOp | β |
re π | CompOp | 44 mathmath: norm_def, GaussianInt.natAbs_norm_eq, re_mul, ofInt_re, GaussianInt.toComplex_defβ, one_re, Pell.is_pell_solution_iff_mem_unitary, gcd_pos_iff, re_zero, re_ofNat, re_ofInt, re_neg, re_sub, mul_im, re_intCast, re_smul, add_re, GaussianInt.toComplex_def, GaussianInt.to_real_re, Pell.re_pellZd, GaussianInt.div_def, lift_apply_apply, neg_re, re_star, sqrtd_re, Pell.pellZd_re, re_one, zero_re, intCast_dvd, star_re, re_natCast, re_add, im_mul, sub_re, toReal_apply, ext_iff, gcd_eq_zero_iff, intCast_re, smul_re, ofNat_re, mul_re, natCast_re, re_sqrtd, GaussianInt.intCast_re
|
sqrtd π | CompOp | 11 mathmath: muld_val, hom_ext_iff, im_sqrtd, lift_symm_apply_coe, smuld_val, sqrtd_re, decompose, nonneg_muld, dmuld, sqrtd_im, re_sqrtd
|