Documentation Verification Report

Basic

πŸ“ Source: Mathlib/NumberTheory/Zsqrtd/Basic.lean

Statistics

MetricCount
DefinitionsZsqrtd, Nonneg, Nonnegg, Nonsquare, SqLe, addCommGroup, addGroupWithOne, commRing, decidableLE, decidableNonneg, decidableNonnegg, im, instAdd, instAddCommSemigroup, instAddMonoid, instAddSemigroup, instCommMonoid, instCommSemigroup, instCommSemiring, instDistrib, instInhabited, instLECastInt, instLTCastInt, instMonoid, instMul, instNeg, instOne, instRing, instSemigroup, instSemiring, instStar, instStarRing, instZero, linearOrder, norm, normMonoidHom, ofInt, preorder, re, sqrtd, instDecidableEqZsqrtd, decEq, Β«termβ„€βˆš_Β»
43
Theoremsadd, ns, ns', abs_norm, add_def, add_im, add_le_add_left, add_lt_add_left, add_re, d_pos, decompose, divides_sq_eq_zero, divides_sq_eq_zero_z, dmuld, eq_of_smul_eq_smul_left, eq_zero_or_eq_zero_of_mul_eq_zero, exists_coprime_of_gcd_pos, ext, ext_iff, gcd_eq_zero_iff, gcd_pos_iff, hom_ext, hom_ext_iff, im_add, im_intCast, im_mul, im_natCast, im_neg, im_ofInt, im_ofNat, im_one, im_smul, im_sqrtd, im_star, im_sub, im_zero, instCharZero, instIsDomainCastInt, instIsOrderedAddMonoidCastInt, instIsStrictOrderedRingCastInt, instNoZeroDivisorsCastInt, instZeroLEOneClassCastInt, intCast_dvd, intCast_dvd_intCast, intCast_im, intCast_re, intCast_val, isCoprime_of_dvd_isCoprime, isUnit_iff_norm_isUnit, le_antisymm, le_arch, le_of_add_le_add_left, le_of_le_le, le_total, lift_apply_apply, lift_injective, lift_symm_apply_coe, mker_norm_eq_unitary, mul_im, mul_nonneg, mul_pos, mul_re, mul_star, muld_val, natCast_im, natCast_re, natCast_val, neg_im, neg_re, nonneg_add_lem, nonneg_antisymm, nonneg_cases, nonneg_iff_zero_le, nonneg_mul, nonneg_mul_lem, nonneg_muld, nonneg_smul, nonneg_total, nonnegg_cases_left, nonnegg_cases_right, nonnegg_comm, nonnegg_neg_pos, nonnegg_pos_neg, nontrivial, norm_conj, norm_def, norm_eq_mul_conj, norm_eq_of_associated, norm_eq_one_iff, norm_eq_one_iff', norm_eq_one_iff_mem_unitary, norm_eq_zero, norm_eq_zero_iff, norm_intCast, norm_mul, norm_natCast, norm_neg, norm_nonneg, norm_one, norm_zero, not_divides_sq, not_sqLe_succ, nsmul_val, ofInt_eq_intCast, ofInt_im, ofInt_re, ofNat_im, ofNat_re, one_im, one_re, re_add, re_intCast, re_mul, re_natCast, re_neg, re_ofInt, re_ofNat, re_one, re_smul, re_sqrtd, re_star, re_sub, re_zero, smul_im, smul_re, smul_val, smuld_val, sqLe_add, sqLe_add_mixed, sqLe_cancel, sqLe_mul, sqLe_of_le, sqLe_smul, sqrtd_im, sqrtd_re, star_im, star_mk, star_re, sub_im, sub_re, zero_im, zero_re
142
Total185

Zsqrtd

Definitions

NameCategoryTheorems
Nonneg πŸ“–MathDef
2 mathmath: nonneg_total, nonneg_iff_zero_le
Nonnegg πŸ“–MathDef
5 mathmath: nonnegg_comm, nonnegg_cases_left, nonnegg_cases_right, nonnegg_neg_pos, nonnegg_pos_neg
Nonsquare πŸ“–CompData
1 mathmath: Pell.dnsq
SqLe πŸ“–MathDef
4 mathmath: not_sqLe_succ, sqLe_mul, nonnegg_neg_pos, nonnegg_pos_neg
addCommGroup πŸ“–CompOp
4 mathmath: im_sub, re_sub, sub_im, sub_re
addGroupWithOne πŸ“–CompOp
35 mathmath: nonneg_smul, exists_coprime_of_gcd_pos, im_smul, intCast_im, re_intCast, le_arch, re_smul, natCast_im, GaussianInt.toComplex_sub, Pell.pellZd_succ_succ, ofInt_eq_intCast, smuld_val, nsmul_val, norm_eq_mul_conj, instCharZero, norm_intCast, intCast_dvd_intCast, intCast_val, mul_star, decompose, natCast_val, im_intCast, smul_val, GaussianInt.prime_of_nat_prime_of_mod_four_eq_three, norm_natCast, intCast_dvd, re_natCast, smul_im, dmuld, intCast_re, im_natCast, GaussianInt.mod_def, smul_re, GaussianInt.prime_iff_mod_four_eq_three_of_nat_prime, natCast_re
commRing πŸ“–CompOp
6 mathmath: Pell.is_pell_solution_iff_mem_unitary, mker_norm_eq_unitary, Pell.Solution₁.coe_mk, Pell.isPell_iff_mem_unitary, instIsOrderedAddMonoidCastInt, norm_eq_one_iff_mem_unitary
decidableLE πŸ“–CompOpβ€”
decidableNonneg πŸ“–CompOpβ€”
decidableNonnegg πŸ“–CompOpβ€”
im πŸ“–CompOp
44 mathmath: norm_def, ofInt_im, GaussianInt.natAbs_norm_eq, GaussianInt.intCast_im, im_sub, re_mul, im_ofNat, GaussianInt.toComplex_defβ‚‚, Pell.is_pell_solution_iff_mem_unitary, gcd_pos_iff, im_star, im_add, im_smul, intCast_im, mul_im, star_im, im_sqrtd, natCast_im, one_im, GaussianInt.toComplex_def, zero_im, GaussianInt.div_def, lift_apply_apply, GaussianInt.to_real_im, ofNat_im, add_im, im_zero, sub_im, im_one, im_intCast, intCast_dvd, Pell.im_pellZd, smul_im, im_mul, im_ofInt, toReal_apply, ext_iff, gcd_eq_zero_iff, im_natCast, sqrtd_im, Pell.pellZd_im, mul_re, im_neg, neg_im
instAdd πŸ“–CompOp
12 mathmath: im_add, add_re, GaussianInt.toComplex_add, Pell.pellZd_succ_succ, nonneg_add_lem, Nonneg.add, add_im, decompose, add_def, re_add, add_le_add_left, add_lt_add_left
instAddCommSemigroup πŸ“–CompOpβ€”
instAddMonoid πŸ“–CompOpβ€”
instAddSemigroup πŸ“–CompOpβ€”
instCommMonoid πŸ“–CompOpβ€”
instCommSemigroup πŸ“–CompOpβ€”
instCommSemiring πŸ“–CompOp
2 mathmath: GaussianInt.prime_of_nat_prime_of_mod_four_eq_three, GaussianInt.prime_iff_mod_four_eq_three_of_nat_prime
instDistrib πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instLECastInt πŸ“–CompOp
5 mathmath: le_arch, le_total, instZeroLEOneClassCastInt, nonneg_iff_zero_le, le_of_le_le
instLTCastInt πŸ“–CompOpβ€”
instMonoid πŸ“–CompOp
8 mathmath: Pell.is_pell_solution_iff_mem_unitary, norm_eq_one_iff, mker_norm_eq_unitary, Pell.Solution₁.coe_mk, norm_eq_one_iff', Pell.isPell_iff_mem_unitary, isUnit_iff_norm_isUnit, norm_eq_one_iff_mem_unitary
instMul πŸ“–CompOp
35 mathmath: GaussianInt.toComplex_mul, nonneg_smul, re_mul, exists_coprime_of_gcd_pos, Pell.isPell_mul, Pell.pellZd_sub, muld_val, Pell.isPell_norm, instNoZeroDivisorsCastInt, Pell.pellZd_succ, GaussianInt.norm_le_norm_mul_left, im_smul, nonneg_mul_lem, mul_im, norm_mul, re_smul, mul_pos, Pell.pellZd_succ_succ, GaussianInt.div_def, smuld_val, nsmul_val, norm_eq_mul_conj, nonneg_mul, mul_star, decompose, smul_val, nonneg_muld, Pell.pellZd_add, smul_im, im_mul, dmuld, GaussianInt.mod_def, smul_re, mul_re, mul_nonneg
instNeg πŸ“–CompOp
7 mathmath: re_neg, nonneg_total, neg_re, norm_neg, GaussianInt.toComplex_neg, im_neg, neg_im
instOne πŸ“–CompOp
8 mathmath: norm_one, one_re, Pell.isPell_norm, one_im, instZeroLEOneClassCastInt, re_one, im_one, GaussianInt.toComplex_one
instRing πŸ“–CompOpβ€”
instSemigroup πŸ“–CompOp
2 mathmath: intCast_dvd_intCast, intCast_dvd
instSemiring πŸ“–CompOp
37 mathmath: GaussianInt.toComplex_mul, instIsDomainCastInt, GaussianInt.intCast_im, GaussianInt.toComplex_def', instIsStrictOrderedRingCastInt, GaussianInt.toComplex_defβ‚‚, GaussianInt.toComplex_div_re, hom_ext_iff, GaussianInt.toComplex_injective, mker_norm_eq_unitary, GaussianInt.toComplex_im_div, lift_symm_apply_coe, GaussianInt.toComplex_add, GaussianInt.toComplex_sub, GaussianInt.toComplex_star, GaussianInt.toComplex_def, GaussianInt.to_real_re, lift_apply_apply, GaussianInt.to_real_im, GaussianInt.toComplex_re_div, GaussianInt.toComplex_re, GaussianInt.toComplex_inj, GaussianInt.intCast_real_norm, GaussianInt.toComplex_im, GaussianInt.im_toComplex, GaussianInt.toComplex_neg, GaussianInt.re_toComplex, GaussianInt.toComplex_zero, toReal_apply, lift_injective, GaussianInt.toComplex_one, GaussianInt.normSq_div_sub_div_lt_one, GaussianInt.intCast_complex_norm, GaussianInt.intCast_re, GaussianInt.toComplex_div_im, GaussianInt.toComplex_eq_zero, toReal_injective
instStar πŸ“–CompOp
13 mathmath: Pell.pellZd_sub, im_star, Pell.isPell_norm, norm_conj, star_mk, star_im, GaussianInt.toComplex_star, GaussianInt.div_def, norm_eq_mul_conj, re_star, mul_star, Pell.isPell_star, star_re
instStarRing πŸ“–CompOp
5 mathmath: Pell.is_pell_solution_iff_mem_unitary, mker_norm_eq_unitary, Pell.Solution₁.coe_mk, Pell.isPell_iff_mem_unitary, norm_eq_one_iff_mem_unitary
instZero πŸ“–CompOp
15 mathmath: norm_eq_zero, GaussianInt.norm_eq_zero, re_zero, instNoZeroDivisorsCastInt, zero_im, instZeroLEOneClassCastInt, im_zero, nonneg_iff_zero_le, norm_zero, zero_re, GaussianInt.toComplex_zero, norm_eq_zero_iff, gcd_eq_zero_iff, nonneg_antisymm, GaussianInt.toComplex_eq_zero
linearOrder πŸ“–CompOp
2 mathmath: instIsStrictOrderedRingCastInt, instIsOrderedAddMonoidCastInt
norm πŸ“–CompOp
30 mathmath: norm_def, GaussianInt.natAbs_norm_eq, GaussianInt.norm_pos, norm_eq_zero, norm_one, abs_norm, GaussianInt.norm_eq_zero, GaussianInt.natCast_natAbs_norm, norm_eq_one_iff, GaussianInt.natAbs_norm_mod_lt, norm_eq_one_iff', GaussianInt.norm_le_norm_mul_left, norm_conj, norm_mul, norm_eq_of_associated, GaussianInt.div_def, norm_eq_mul_conj, norm_intCast, norm_neg, GaussianInt.intCast_real_norm, GaussianInt.norm_mod_lt, norm_zero, norm_nonneg, norm_natCast, norm_eq_zero_iff, isUnit_iff_norm_isUnit, norm_eq_one_iff_mem_unitary, GaussianInt.norm_nonneg, GaussianInt.abs_natCast_norm, GaussianInt.intCast_complex_norm
normMonoidHom πŸ“–CompOp
1 mathmath: mker_norm_eq_unitary
ofInt πŸ“–CompOp
5 mathmath: ofInt_im, ofInt_re, re_ofInt, ofInt_eq_intCast, im_ofInt
preorder πŸ“–CompOpβ€”
re πŸ“–CompOp
44 mathmath: norm_def, GaussianInt.natAbs_norm_eq, re_mul, ofInt_re, GaussianInt.toComplex_defβ‚‚, one_re, Pell.is_pell_solution_iff_mem_unitary, gcd_pos_iff, re_zero, re_ofNat, re_ofInt, re_neg, re_sub, mul_im, re_intCast, re_smul, add_re, GaussianInt.toComplex_def, GaussianInt.to_real_re, Pell.re_pellZd, GaussianInt.div_def, lift_apply_apply, neg_re, re_star, sqrtd_re, Pell.pellZd_re, re_one, zero_re, intCast_dvd, star_re, re_natCast, re_add, im_mul, sub_re, toReal_apply, ext_iff, gcd_eq_zero_iff, intCast_re, smul_re, ofNat_re, mul_re, natCast_re, re_sqrtd, GaussianInt.intCast_re
sqrtd πŸ“–CompOp
11 mathmath: muld_val, hom_ext_iff, im_sqrtd, lift_symm_apply_coe, smuld_val, sqrtd_re, decompose, nonneg_muld, dmuld, sqrtd_im, re_sqrtd

Theorems

NameKindAssumesProvesValidatesDepends On
abs_norm πŸ“–mathematicalβ€”abs
instLatticeInt
Int.instAddGroup
norm
β€”abs_of_nonneg
Int.instAddLeftMono
norm_nonneg
add_def πŸ“–mathematicalβ€”Zsqrtd
instAdd
β€”β€”
add_im πŸ“–mathematicalβ€”im
Zsqrtd
instAdd
β€”im_add
add_le_add_left πŸ“–mathematicalZsqrtd
instLECastInt
instAddβ€”add_sub_add_right_eq_sub
add_lt_add_left πŸ“–mathematicalZsqrtd
instLTCastInt
instAddβ€”le_of_add_le_add_left
add_re πŸ“–mathematicalβ€”re
Zsqrtd
instAdd
β€”re_add
d_pos πŸ“–β€”β€”β€”β€”lt_of_le_of_ne
Nonsquare.ns
decompose πŸ“–mathematicalβ€”Zsqrtd
instAdd
AddGroupWithOne.toIntCast
addGroupWithOne
instMul
sqrtd
β€”ext
re_intCast
MulZeroClass.zero_mul
mul_one
im_intCast
MulZeroClass.mul_zero
add_zero
one_mul
zero_add
divides_sq_eq_zero πŸ“–β€”β€”β€”β€”mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
LT.lt.ne'
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
mul_comm
mul_assoc
mul_left_comm
Nonsquare.ns
dvd_mul_right
divides_sq_eq_zero_z πŸ“–β€”β€”β€”β€”divides_sq_eq_zero
mul_assoc
dmuld πŸ“–mathematicalβ€”Zsqrtd
instMul
sqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
β€”ext
MulZeroClass.mul_zero
mul_one
zero_add
re_intCast
add_zero
im_intCast
eq_of_smul_eq_smul_left πŸ“–β€”Zsqrtd
instMul
AddGroupWithOne.toIntCast
addGroupWithOne
β€”β€”ext_iff
re_smul
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Int.instIsCancelMulZero
im_smul
eq_zero_or_eq_zero_of_mul_eq_zero πŸ“–β€”Zsqrtd
instMul
instZero
β€”β€”eq_neg_of_add_eq_zero_left
divides_sq_eq_zero_z
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
Int.instIsCancelMulZero
mul_assoc
mul_neg
mul_left_comm
neg_mul
neg_neg
exists_coprime_of_gcd_pos πŸ“–mathematicalre
im
Zsqrtd
instMul
AddGroupWithOne.toIntCast
addGroupWithOne
IsCoprime
Int.instCommSemiring
β€”Int.exists_gcd_one
smul_val
mul_comm
Int.isCoprime_iff_gcd_eq_one
ext πŸ“–β€”re
im
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”re
im
β€”ext
gcd_eq_zero_iff πŸ“–mathematicalβ€”re
im
Zsqrtd
instZero
β€”β€”
gcd_pos_iff πŸ“–mathematicalβ€”re
im
β€”pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
gcd_eq_zero_iff
hom_ext πŸ“–β€”DFunLike.coe
RingHom
Zsqrtd
Semiring.toNonAssocSemiring
instSemiring
NonAssocRing.toNonAssocSemiring
RingHom.instFunLike
sqrtd
β€”β€”RingHom.ext
decompose
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_intCast
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
hom_ext_iff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Zsqrtd
Semiring.toNonAssocSemiring
instSemiring
NonAssocRing.toNonAssocSemiring
RingHom.instFunLike
sqrtd
β€”hom_ext
im_add πŸ“–mathematicalβ€”im
Zsqrtd
instAdd
β€”β€”
im_intCast πŸ“–mathematicalβ€”im
Zsqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
β€”β€”
im_mul πŸ“–mathematicalβ€”im
Zsqrtd
instMul
re
β€”β€”
im_natCast πŸ“–mathematicalβ€”im
Zsqrtd
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”β€”
im_neg πŸ“–mathematicalβ€”im
Zsqrtd
instNeg
β€”β€”
im_ofInt πŸ“–mathematicalβ€”im
ofInt
β€”β€”
im_ofNat πŸ“–mathematicalβ€”imβ€”β€”
im_one πŸ“–mathematicalβ€”im
Zsqrtd
instOne
β€”β€”
im_smul πŸ“–mathematicalβ€”im
Zsqrtd
instMul
AddGroupWithOne.toIntCast
addGroupWithOne
β€”re_intCast
im_intCast
MulZeroClass.zero_mul
add_zero
im_sqrtd πŸ“–mathematicalβ€”im
sqrtd
β€”β€”
im_star πŸ“–mathematicalβ€”im
Star.star
Zsqrtd
instStar
β€”β€”
im_sub πŸ“–mathematicalβ€”im
Zsqrtd
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
addCommGroup
β€”β€”
im_zero πŸ“–mathematicalβ€”im
Zsqrtd
instZero
β€”β€”
instCharZero πŸ“–mathematicalβ€”CharZero
Zsqrtd
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”Int.instCharZero
instIsDomainCastInt πŸ“–mathematicalβ€”IsDomain
Zsqrtd
instSemiring
β€”NoZeroDivisors.to_isDomain
nontrivial
instNoZeroDivisorsCastInt
instIsOrderedAddMonoidCastInt πŸ“–mathematicalβ€”IsOrderedAddMonoid
Zsqrtd
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder
β€”add_le_add_left
instIsStrictOrderedRingCastInt πŸ“–mathematicalβ€”IsStrictOrderedRing
Zsqrtd
instSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder
β€”IsStrictOrderedRing.of_mul_pos
instIsOrderedAddMonoidCastInt
instZeroLEOneClassCastInt
nontrivial
mul_pos
instNoZeroDivisorsCastInt πŸ“–mathematicalβ€”NoZeroDivisors
Zsqrtd
instMul
instZero
β€”eq_zero_or_eq_zero_of_mul_eq_zero
instZeroLEOneClassCastInt πŸ“–mathematicalβ€”ZeroLEOneClass
Zsqrtd
instZero
instOne
instLECastInt
β€”β€”
intCast_dvd πŸ“–mathematicalβ€”Zsqrtd
semigroupDvd
instSemigroup
AddGroupWithOne.toIntCast
addGroupWithOne
re
im
β€”re_intCast
im_intCast
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
smul_val
ext_iff
intCast_dvd_intCast πŸ“–mathematicalβ€”Zsqrtd
semigroupDvd
instSemigroup
AddGroupWithOne.toIntCast
addGroupWithOne
β€”intCast_dvd
re_intCast
im_intCast
dvd_zero
intCast_im πŸ“–mathematicalβ€”im
Zsqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
β€”im_intCast
intCast_re πŸ“–mathematicalβ€”re
Zsqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
β€”re_intCast
intCast_val πŸ“–mathematicalβ€”Zsqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
β€”ext
re_intCast
im_intCast
isCoprime_of_dvd_isCoprime πŸ“–β€”IsCoprime
Int.instCommSemiring
re
im
Zsqrtd
semigroupDvd
instSemigroup
β€”β€”isCoprime_of_dvd
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
zero_dvd_iff
Int.instNontrivial
ext
intCast_dvd
dvd_trans
IsCoprime.isUnit_of_dvd'
isUnit_iff_norm_isUnit πŸ“–mathematicalβ€”IsUnit
Zsqrtd
instMonoid
Int.instMonoid
norm
β€”Int.isUnit_iff_natAbs_eq
norm_eq_one_iff
le_antisymm πŸ“–β€”Zsqrtd
instLECastInt
β€”β€”eq_of_sub_eq_zero
nonneg_antisymm
neg_sub
le_arch πŸ“–mathematicalβ€”Zsqrtd
instLECastInt
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”Nat.cast_zero
zero_add
Nat.cast_add
Nat.cast_one
neg_add_rev
add_assoc
add_neg_cancel_left
add_neg_cancel
LE.le.trans
MulZeroClass.mul_zero
add_zero
sub_self
mul_comm
mul_left_comm
mul_one
add_sub_cancel_left
le_of_add_le_add_left πŸ“–β€”Zsqrtd
instLECastInt
instAdd
β€”β€”add_neg_cancel_comm
add_le_add_left
le_of_le_le πŸ“–mathematicalβ€”Zsqrtd
instLECastInt
β€”β€”
le_total πŸ“–mathematicalβ€”Zsqrtd
instLECastInt
β€”nonneg_total
neg_sub
lift_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Zsqrtd
Semiring.toNonAssocSemiring
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Equiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
EquivLike.toFunLike
Equiv.instEquivLike
lift
Distrib.toAdd
re
im
β€”β€”
lift_injective πŸ“–mathematicalβ€”Zsqrtd
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Equiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
EquivLike.toFunLike
Equiv.instEquivLike
lift
β€”injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Int.cast_injective
norm_eq_mul_conj
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MulZeroClass.zero_mul
norm_eq_zero
Int.cast_zero
re_intCast
im_intCast
add_zero
lift_symm_apply_coe πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
Equiv
RingHom
Zsqrtd
Semiring.toNonAssocSemiring
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
lift
RingHom.instFunLike
sqrtd
β€”β€”
mker_norm_eq_unitary πŸ“–mathematicalβ€”MonoidHom.mker
Zsqrtd
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
Int.instSemiring
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
MonoidHom.instMonoidHomClass
normMonoidHom
unitary
instMonoid
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
instStarRing
β€”Submonoid.ext
MonoidHom.instMonoidHomClass
norm_eq_one_iff_mem_unitary
mul_im πŸ“–mathematicalβ€”im
Zsqrtd
instMul
re
β€”im_mul
mul_nonneg πŸ“–mathematicalZsqrtd
instLECastInt
instZero
instMulβ€”nonneg_mul
mul_pos πŸ“–mathematicalZsqrtd
instLTCastInt
instZero
instMulβ€”NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
instNoZeroDivisorsCastInt
le_antisymm
mul_nonneg
le_of_lt
ne_of_gt
mul_re πŸ“–mathematicalβ€”re
Zsqrtd
instMul
im
β€”re_mul
mul_star πŸ“–mathematicalβ€”Zsqrtd
instMul
Star.star
instStar
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
addGroupWithOne
AddGroupWithOne.toIntCast
β€”ext
mul_neg
mul_comm
sub_eq_add_neg
re_intCast
im_intCast
MulZeroClass.mul_zero
add_zero
neg_add_cancel
neg_zero
muld_val πŸ“–mathematicalβ€”Zsqrtd
instMul
sqrtd
β€”ext
MulZeroClass.zero_mul
mul_one
zero_add
one_mul
natCast_im πŸ“–mathematicalβ€”im
Zsqrtd
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”im_natCast
natCast_re πŸ“–mathematicalβ€”re
Zsqrtd
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”re_natCast
natCast_val πŸ“–mathematicalβ€”Zsqrtd
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”β€”
neg_im πŸ“–mathematicalβ€”im
Zsqrtd
instNeg
β€”im_neg
neg_re πŸ“–mathematicalβ€”re
Zsqrtd
instNeg
β€”re_neg
nonneg_add_lem πŸ“–mathematicalNonnegZsqrtd
instAdd
β€”sqLe_cancel
sqLe_of_le
le_rfl
one_mul
not_le_of_gt
nonnegg_pos_neg
nonnegg_neg_pos
add_def
neg_add_eq_sub
nonneg_antisymm πŸ“–mathematicalNonneg
Zsqrtd
instNeg
instZeroβ€”not_sqLe_succ
d_pos
le_antisymm
one_mul
not_divides_sq
nonneg_cases πŸ“–β€”Nonnegβ€”β€”β€”
nonneg_iff_zero_le πŸ“–mathematicalβ€”Nonneg
Zsqrtd
instLECastInt
instZero
β€”sub_zero
nonneg_mul πŸ“–mathematicalNonnegZsqrtd
instMul
β€”nonneg_cases
nonneg_mul_lem
mul_comm
mul_neg
neg_mul
neg_neg
add_comm
neg_add_rev
nonnegg_pos_neg
sqLe_mul
nonnegg_neg_pos
nonneg_mul_lem πŸ“–mathematicalNonnegZsqrtd
instMul
β€”decompose
right_distrib
Distrib.rightDistribClass
mul_assoc
Int.cast_natCast
Nonneg.add
nonneg_smul
nonneg_muld
nonneg_muld πŸ“–mathematicalNonnegZsqrtd
instMul
sqrtd
β€”nonneg_cases
muld_val
mul_neg
nonnegg_neg_pos
mul_comm
mul_one
mul_left_comm
nonnegg_pos_neg
nonneg_smul πŸ“–mathematicalNonnegZsqrtd
instMul
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”Int.cast_natCast
nonneg_cases
smul_val
mul_neg
Nat.cast_mul
nonnegg_pos_neg
sqLe_smul
nonnegg_neg_pos
nonneg_total πŸ“–mathematicalβ€”Nonneg
Zsqrtd
instNeg
β€”β€”
nonnegg_cases_left πŸ“–mathematicalSqLeNonneggβ€”nonnegg_comm
nonnegg_cases_right
nonnegg_cases_right πŸ“–mathematicalSqLeNonneggβ€”β€”
nonnegg_comm πŸ“–mathematicalβ€”Nonneggβ€”β€”
nonnegg_neg_pos πŸ“–mathematicalβ€”Nonnegg
SqLe
β€”Nat.cast_zero
neg_zero
MulZeroClass.mul_zero
Nat.instCanonicallyOrderedAdd
nonnegg_pos_neg πŸ“–mathematicalβ€”Nonnegg
SqLe
β€”nonnegg_comm
nonnegg_neg_pos
nontrivial πŸ“–mathematicalβ€”Nontrivial
Zsqrtd
β€”Iff.not
ext_iff
norm_conj πŸ“–mathematicalβ€”norm
Star.star
Zsqrtd
instStar
β€”instCharZero
norm_eq_mul_conj
star_star
mul_comm
norm_def πŸ“–mathematicalβ€”norm
re
im
β€”β€”
norm_eq_mul_conj πŸ“–mathematicalβ€”Zsqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
norm
instMul
Star.star
instStar
β€”ext
mul_comm
sub_eq_add_neg
Int.cast_add
Int.cast_mul
Int.cast_neg
re_intCast
im_intCast
MulZeroClass.mul_zero
add_zero
mul_neg
neg_zero
neg_add_cancel
norm_eq_of_associated πŸ“–mathematicalAssociated
Zsqrtd
instMonoid
normβ€”norm_mul
norm_eq_one_iff'
Units.isUnit
mul_one
norm_eq_one_iff πŸ“–mathematicalβ€”norm
IsUnit
Zsqrtd
instMonoid
β€”isUnit_iff_dvd_one
le_total
norm_eq_mul_conj
instCharZero
neg_mul_eq_mul_neg
Int.cast_neg
mul_eq_one
Unique.instSubsingleton
norm_one
norm_mul
norm_eq_one_iff' πŸ“–mathematicalβ€”norm
IsUnit
Zsqrtd
instMonoid
β€”norm_eq_one_iff
norm_nonneg
norm_eq_one_iff_mem_unitary πŸ“–mathematicalβ€”norm
Zsqrtd
Submonoid
Monoid.toMulOneClass
instMonoid
SetLike.instMembership
Submonoid.instSetLike
unitary
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
instStarRing
β€”Unitary.mem_iff_self_mul_star
norm_eq_mul_conj
Nat.cast_one
Int.cast_one
instCharZero
norm_eq_zero πŸ“–mathematicalβ€”norm
Zsqrtd
instZero
β€”ext_iff
divides_sq_eq_zero_z
Int.instCharZero
sub_eq_zero
le_antisymm
mul_assoc
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
LT.lt.le
mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Int.instAddLeftMono
eq_zero_of_mul_self_eq_zero
IsStrictOrderedRing.noZeroDivisors
MulZeroClass.mul_zero
LT.lt.ne
norm_zero
norm_eq_zero_iff πŸ“–mathematicalβ€”norm
Zsqrtd
instZero
β€”mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Int.instAddLeftMono
neg_nonneg
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
LT.lt.le
add_eq_zero_iff_of_nonneg
covariant_swap_add_of_covariant_add
mul_assoc
sub_eq_add_neg
norm_def
ext
eq_zero_of_mul_self_eq_zero
IsStrictOrderedRing.noZeroDivisors
mul_eq_zero
neg_eq_zero
LT.lt.ne
norm_zero
norm_intCast πŸ“–mathematicalβ€”norm
Zsqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
β€”re_intCast
im_intCast
MulZeroClass.mul_zero
sub_zero
norm_mul πŸ“–mathematicalβ€”norm
Zsqrtd
instMul
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.mul_one
norm_natCast πŸ“–mathematicalβ€”norm
Zsqrtd
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”norm_intCast
norm_neg πŸ“–mathematicalβ€”norm
Zsqrtd
instNeg
β€”instCharZero
norm_eq_mul_conj
star_neg
mul_neg
neg_mul
neg_neg
norm_nonneg πŸ“–mathematicalβ€”normβ€”add_nonneg
Int.instAddLeftMono
mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
mul_assoc
neg_mul_eq_neg_mul
mul_nonneg
neg_nonneg
norm_one πŸ“–mathematicalβ€”norm
Zsqrtd
instOne
β€”mul_one
MulZeroClass.mul_zero
sub_zero
norm_zero πŸ“–mathematicalβ€”norm
Zsqrtd
instZero
β€”MulZeroClass.mul_zero
sub_self
not_divides_sq πŸ“–β€”β€”β€”β€”divides_sq_eq_zero
not_sqLe_succ πŸ“–mathematicalβ€”SqLeβ€”not_le_of_gt
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
nsmul_val πŸ“–mathematicalβ€”Zsqrtd
instMul
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”ext
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
ofInt_eq_intCast πŸ“–mathematicalβ€”ofInt
Zsqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
β€”ext
re_intCast
im_intCast
ofInt_im πŸ“–mathematicalβ€”im
ofInt
β€”im_ofInt
ofInt_re πŸ“–mathematicalβ€”re
ofInt
β€”re_ofInt
ofNat_im πŸ“–mathematicalβ€”imβ€”im_ofNat
ofNat_re πŸ“–mathematicalβ€”reβ€”re_ofNat
one_im πŸ“–mathematicalβ€”im
Zsqrtd
instOne
β€”im_one
one_re πŸ“–mathematicalβ€”re
Zsqrtd
instOne
β€”re_one
re_add πŸ“–mathematicalβ€”re
Zsqrtd
instAdd
β€”β€”
re_intCast πŸ“–mathematicalβ€”re
Zsqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
β€”β€”
re_mul πŸ“–mathematicalβ€”re
Zsqrtd
instMul
im
β€”β€”
re_natCast πŸ“–mathematicalβ€”re
Zsqrtd
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
addGroupWithOne
β€”β€”
re_neg πŸ“–mathematicalβ€”re
Zsqrtd
instNeg
β€”β€”
re_ofInt πŸ“–mathematicalβ€”re
ofInt
β€”β€”
re_ofNat πŸ“–mathematicalβ€”reβ€”β€”
re_one πŸ“–mathematicalβ€”re
Zsqrtd
instOne
β€”β€”
re_smul πŸ“–mathematicalβ€”re
Zsqrtd
instMul
AddGroupWithOne.toIntCast
addGroupWithOne
β€”re_intCast
im_intCast
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
re_sqrtd πŸ“–mathematicalβ€”re
sqrtd
β€”β€”
re_star πŸ“–mathematicalβ€”re
Star.star
Zsqrtd
instStar
β€”β€”
re_sub πŸ“–mathematicalβ€”re
Zsqrtd
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
addCommGroup
β€”β€”
re_zero πŸ“–mathematicalβ€”re
Zsqrtd
instZero
β€”β€”
smul_im πŸ“–mathematicalβ€”im
Zsqrtd
instMul
AddGroupWithOne.toIntCast
addGroupWithOne
β€”im_smul
smul_re πŸ“–mathematicalβ€”re
Zsqrtd
instMul
AddGroupWithOne.toIntCast
addGroupWithOne
β€”re_smul
smul_val πŸ“–mathematicalβ€”Zsqrtd
instMul
AddGroupWithOne.toIntCast
addGroupWithOne
β€”ext
re_intCast
im_intCast
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
smuld_val πŸ“–mathematicalβ€”Zsqrtd
instMul
sqrtd
AddGroupWithOne.toIntCast
addGroupWithOne
β€”ext
re_intCast
MulZeroClass.zero_mul
mul_one
im_intCast
MulZeroClass.mul_zero
add_zero
one_mul
zero_add
sqLe_add πŸ“–β€”SqLeβ€”β€”sqLe_add_mixed
mul_add
Distrib.leftDistribClass
mul_comm
mul_left_comm
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_assoc
sqLe_add_mixed πŸ“–β€”SqLeβ€”β€”mul_left_comm
mul_comm
sqLe_cancel πŸ“–β€”SqLeβ€”β€”le_of_not_gt
not_le_of_gt
mul_add
Distrib.leftDistribClass
mul_comm
mul_left_comm
add_assoc
sqLe_add_mixed
le_of_lt
lt_imp_lt_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mul_assoc
le_refl
add_le_add_right
add_le_add
add_lt_add_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sqLe_mul πŸ“–mathematicalβ€”SqLeβ€”sub_nonneg_of_le
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
Int.ofNat_le_ofNat_of_le
Int.le_of_ofNat_le_ofNat
le_of_sub_nonneg
one_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.mul_one
sqLe_of_le πŸ“–β€”SqLeβ€”β€”mul_le_mul'
Nat.instMulLeftMono
covariant_swap_mul_of_covariant_mul
mul_le_mul_right
sqLe_smul πŸ“–β€”SqLeβ€”β€”mul_left_comm
mul_assoc
sqrtd_im πŸ“–mathematicalβ€”im
sqrtd
β€”im_sqrtd
sqrtd_re πŸ“–mathematicalβ€”re
sqrtd
β€”re_sqrtd
star_im πŸ“–mathematicalβ€”im
Star.star
Zsqrtd
instStar
β€”im_star
star_mk πŸ“–mathematicalβ€”Star.star
Zsqrtd
instStar
β€”β€”
star_re πŸ“–mathematicalβ€”re
Star.star
Zsqrtd
instStar
β€”re_star
sub_im πŸ“–mathematicalβ€”im
Zsqrtd
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
addCommGroup
β€”im_sub
sub_re πŸ“–mathematicalβ€”re
Zsqrtd
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
addCommGroup
β€”re_sub
zero_im πŸ“–mathematicalβ€”im
Zsqrtd
instZero
β€”im_zero
zero_re πŸ“–mathematicalβ€”re
Zsqrtd
instZero
β€”re_zero

Zsqrtd.Nonneg

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalZsqrtd.NonnegZsqrtd
Zsqrtd.instAdd
β€”Zsqrtd.nonneg_cases
Zsqrtd.nonnegg_cases_right
Zsqrtd.sqLe_of_le
le_of_neg_le_neg
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
add_comm
Zsqrtd.nonnegg_pos_neg
Zsqrtd.nonnegg_cases_left
Zsqrtd.nonnegg_neg_pos
Zsqrtd.sqLe_add
Zsqrtd.add_def
neg_add
Nat.cast_add
Zsqrtd.nonneg_add_lem

Zsqrtd.Nonsquare

Theorems

NameKindAssumesProvesValidatesDepends On
ns πŸ“–β€”β€”β€”β€”β€”
ns' πŸ“–β€”β€”β€”β€”ns

(root)

Definitions

NameCategoryTheorems
Zsqrtd πŸ“–CompData
105 mathmath: Zsqrtd.instIsDomainCastInt, Zsqrtd.nonneg_smul, Zsqrtd.norm_eq_zero, Zsqrtd.im_sub, Zsqrtd.norm_one, Zsqrtd.re_mul, Zsqrtd.exists_coprime_of_gcd_pos, Pell.isPell_mul, Zsqrtd.instIsStrictOrderedRingCastInt, Zsqrtd.one_re, Pell.pellZd_sub, Pell.is_pell_solution_iff_mem_unitary, Zsqrtd.muld_val, Zsqrtd.hom_ext_iff, Zsqrtd.re_zero, Zsqrtd.im_star, Zsqrtd.norm_eq_one_iff, Zsqrtd.mker_norm_eq_unitary, Zsqrtd.im_add, Pell.isPell_norm, Pell.Solution₁.coe_mk, Zsqrtd.instNoZeroDivisorsCastInt, Pell.pellZd_succ, Zsqrtd.norm_eq_one_iff', Zsqrtd.re_neg, Zsqrtd.norm_conj, Zsqrtd.re_sub, Zsqrtd.im_smul, Zsqrtd.nonneg_mul_lem, Zsqrtd.intCast_im, Zsqrtd.mul_im, Zsqrtd.star_mk, Zsqrtd.norm_mul, Zsqrtd.star_im, Zsqrtd.re_intCast, Zsqrtd.le_arch, Zsqrtd.lift_symm_apply_coe, Zsqrtd.re_smul, Zsqrtd.natCast_im, Zsqrtd.add_re, Pell.isPell_iff_mem_unitary, Zsqrtd.one_im, Zsqrtd.nonneg_total, Zsqrtd.zero_im, Pell.pellZd_succ_succ, Zsqrtd.ofInt_eq_intCast, Zsqrtd.smuld_val, Zsqrtd.le_total, Zsqrtd.nsmul_val, Zsqrtd.nonneg_add_lem, Zsqrtd.nontrivial, Zsqrtd.lift_apply_apply, Zsqrtd.norm_eq_mul_conj, Zsqrtd.nonneg_mul, Zsqrtd.instCharZero, Zsqrtd.neg_re, Zsqrtd.instZeroLEOneClassCastInt, Zsqrtd.Nonneg.add, Zsqrtd.norm_intCast, Zsqrtd.intCast_dvd_intCast, Zsqrtd.intCast_val, Zsqrtd.norm_neg, Zsqrtd.add_im, Zsqrtd.im_zero, Zsqrtd.re_star, Zsqrtd.sub_im, Zsqrtd.nonneg_iff_zero_le, Zsqrtd.mul_star, Zsqrtd.norm_zero, Pell.isPell_star, Zsqrtd.re_one, Zsqrtd.im_one, Zsqrtd.zero_re, Zsqrtd.decompose, Zsqrtd.add_def, Zsqrtd.natCast_val, Zsqrtd.instIsOrderedAddMonoidCastInt, Zsqrtd.im_intCast, Zsqrtd.smul_val, Zsqrtd.norm_natCast, Zsqrtd.nonneg_muld, Zsqrtd.intCast_dvd, Zsqrtd.star_re, Zsqrtd.norm_eq_zero_iff, Pell.pellZd_add, Zsqrtd.re_natCast, Zsqrtd.smul_im, Zsqrtd.isUnit_iff_norm_isUnit, Zsqrtd.re_add, Zsqrtd.im_mul, Zsqrtd.sub_re, Zsqrtd.toReal_apply, Zsqrtd.dmuld, Zsqrtd.lift_injective, Zsqrtd.norm_eq_one_iff_mem_unitary, Zsqrtd.gcd_eq_zero_iff, Zsqrtd.intCast_re, Zsqrtd.im_natCast, Zsqrtd.smul_re, Zsqrtd.le_of_le_le, Zsqrtd.mul_re, Zsqrtd.natCast_re, Zsqrtd.im_neg, Zsqrtd.neg_im, Zsqrtd.toReal_injective
instDecidableEqZsqrtd πŸ“–CompOpβ€”
Β«termβ„€βˆš_Β» πŸ“–CompOpβ€”

instDecidableEqZsqrtd

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

---

← Back to Index