Documentation Verification Report

GaussianInt

πŸ“ Source: Mathlib/NumberTheory/Zsqrtd/GaussianInt.lean

Statistics

MetricCount
DefinitionsGaussianInt, instCoeComplex, instCommRing, instDiv, instEuclideanDomain, instMod, instRepr, toComplex
8
Theoremsabs_natCast_norm, div_def, im_toComplex, instNontrivial, intCast_complex_norm, intCast_im, intCast_re, intCast_real_norm, mod_def, natAbs_norm_eq, natAbs_norm_mod_lt, natCast_natAbs_norm, normSq_div_sub_div_lt_one, normSq_le_normSq_of_re_le_of_im_le, norm_eq_zero, norm_le_norm_mul_left, norm_mod_lt, norm_nonneg, norm_pos, re_toComplex, sq_add_sq_of_nat_prime_of_not_irreducible, toComplex_add, toComplex_def, toComplex_def', toComplex_defβ‚‚, toComplex_div_im, toComplex_div_re, toComplex_eq_zero, toComplex_im, toComplex_im_div, toComplex_inj, toComplex_injective, toComplex_mul, toComplex_neg, toComplex_one, toComplex_re, toComplex_re_div, toComplex_star, toComplex_sub, toComplex_zero, to_real_im, to_real_re
42
Total50

GaussianInt

Definitions

NameCategoryTheorems
instCoeComplex πŸ“–CompOpβ€”
instCommRing πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
7 mathmath: toComplex_div_re, toComplex_im_div, div_def, toComplex_re_div, mod_def, normSq_div_sub_div_lt_one, toComplex_div_im
instEuclideanDomain πŸ“–CompOpβ€”
instMod πŸ“–CompOp
3 mathmath: natAbs_norm_mod_lt, norm_mod_lt, mod_def
instRepr πŸ“–CompOpβ€”
toComplex πŸ“–CompOp
28 mathmath: toComplex_mul, intCast_im, toComplex_def', toComplex_defβ‚‚, toComplex_div_re, toComplex_injective, toComplex_im_div, toComplex_add, toComplex_sub, toComplex_star, toComplex_def, to_real_re, to_real_im, toComplex_re_div, toComplex_re, toComplex_inj, intCast_real_norm, toComplex_im, im_toComplex, toComplex_neg, re_toComplex, toComplex_zero, toComplex_one, normSq_div_sub_div_lt_one, intCast_complex_norm, intCast_re, toComplex_div_im, toComplex_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
abs_natCast_norm πŸ“–mathematicalβ€”Zsqrtd.normβ€”norm_nonneg
div_def πŸ“–mathematicalβ€”GaussianInt
instDiv
round
DivisionRing.toRing
Rat.instDivisionRing
Rat.linearOrder
Rat.instFloorRing
Zsqrtd.re
Zsqrtd.instMul
Star.star
Zsqrtd.instStar
Zsqrtd.norm
Zsqrtd.im
β€”neg_mul
one_mul
mul_neg
neg_neg
Int.cast_add
Int.cast_mul
Int.cast_neg
div_eq_mul_inv
im_toComplex πŸ“–mathematicalβ€”Complex.im
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Real
Real.instIntCast
β€”mul_one
MulZeroClass.mul_zero
add_zero
zero_add
instNontrivial πŸ“–mathematicalβ€”Nontrivial
GaussianInt
β€”β€”
intCast_complex_norm πŸ“–mathematicalβ€”Complex
Complex.instIntCast
Zsqrtd.norm
Complex.ofReal
DFunLike.coe
MonoidWithZeroHom
Real
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
Real.semiring
MonoidWithZeroHom.funLike
Complex.normSq
RingHom
GaussianInt
Zsqrtd.instSemiring
RingHom.instFunLike
toComplex
β€”Zsqrtd.norm.eq_1
Complex.normSq.eq_1
neg_mul
one_mul
sub_neg_eq_add
Int.cast_add
Int.cast_mul
re_toComplex
im_toComplex
Complex.ofReal_add
Complex.ofReal_mul
intCast_im πŸ“–mathematicalβ€”Real
Real.instIntCast
Zsqrtd.im
Complex.im
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
β€”mul_one
MulZeroClass.mul_zero
add_zero
zero_add
intCast_re πŸ“–mathematicalβ€”Real
Real.instIntCast
Zsqrtd.re
Complex.re
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
β€”MulZeroClass.mul_zero
mul_one
sub_self
add_zero
intCast_real_norm πŸ“–mathematicalβ€”Real
Real.instIntCast
Zsqrtd.norm
DFunLike.coe
MonoidWithZeroHom
Complex
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
Real.semiring
MonoidWithZeroHom.funLike
Complex.normSq
RingHom
GaussianInt
Zsqrtd.instSemiring
RingHom.instFunLike
toComplex
β€”Zsqrtd.norm.eq_1
Complex.normSq.eq_1
neg_mul
one_mul
sub_neg_eq_add
Int.cast_add
Int.cast_mul
intCast_re
intCast_im
mod_def πŸ“–mathematicalβ€”GaussianInt
instMod
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Zsqrtd.addGroupWithOne
Zsqrtd.instMul
instDiv
β€”β€”
natAbs_norm_eq πŸ“–mathematicalβ€”Zsqrtd.norm
Zsqrtd.re
Zsqrtd.im
β€”Int.natCast_natAbs
Nat.cast_add
Nat.cast_mul
Zsqrtd.abs_norm
Int.instAddLeftMono
Int.instZeroLEOneClass
neg_mul
one_mul
sub_neg_eq_add
abs_mul_abs_self
natAbs_norm_mod_lt πŸ“–mathematicalβ€”Zsqrtd.norm
GaussianInt
instMod
β€”Nat.cast_natAbs
Zsqrtd.abs_norm
Int.instAddLeftMono
Int.instZeroLEOneClass
norm_mod_lt
natCast_natAbs_norm πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Zsqrtd.norm
AddGroupWithOne.toIntCast
β€”Nat.cast_natAbs
Zsqrtd.abs_norm
Int.instAddLeftMono
Int.instZeroLEOneClass
normSq_div_sub_div_lt_one πŸ“–mathematicalβ€”Real
Real.instLT
DFunLike.coe
MonoidWithZeroHom
Complex
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
Real.semiring
MonoidWithZeroHom.funLike
Complex.normSq
Complex.instSub
DivInvMonoid.toDiv
Complex.instDivInvMonoid
RingHom
GaussianInt
Zsqrtd.instSemiring
RingHom.instFunLike
toComplex
instDiv
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ext
MulZeroClass.mul_zero
sub_self
mul_one
add_zero
zero_add
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instIsOrderedRing
normSq_le_normSq_of_re_le_of_im_le
toComplex_re_div
one_div
Complex.inv_re
div_self_mul_self'
Complex.inv_im
neg_zero
zero_div
abs_sub_round
toComplex_im_div
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
normSq_le_normSq_of_re_le_of_im_le πŸ“–mathematicalReal
Real.instLE
abs
Real.lattice
Real.instAddGroup
Complex.re
Complex.im
DFunLike.coe
MonoidWithZeroHom
Complex
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
Real.semiring
MonoidWithZeroHom.funLike
Complex.normSq
β€”Complex.normSq_apply
abs_mul_self
Real.instIsOrderedRing
abs_mul
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
abs_nonneg
norm_eq_zero πŸ“–mathematicalβ€”Zsqrtd.norm
GaussianInt
Zsqrtd.instZero
β€”IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
intCast_real_norm
Int.cast_zero
Real.instNontrivial
MonoidWithZeroHom.monoidWithZeroHomClass
norm_le_norm_mul_left πŸ“–mathematicalβ€”Zsqrtd.norm
GaussianInt
Zsqrtd.instMul
β€”Zsqrtd.norm_mul
le_mul_of_one_le_right
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
abs_natCast_norm
norm_pos
norm_mod_lt πŸ“–mathematicalβ€”Zsqrtd.norm
GaussianInt
instMod
β€”toComplex_zero
Int.cast_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
intCast_real_norm
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Complex.normSq_mul
mul_sub
mul_div_cancelβ‚€
mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
normSq_div_sub_div_lt_one
Complex.normSq_pos
mul_one
norm_nonneg πŸ“–mathematicalβ€”Zsqrtd.normβ€”Zsqrtd.norm_nonneg
Int.instAddLeftMono
Int.instZeroLEOneClass
norm_pos πŸ“–mathematicalβ€”Zsqrtd.normβ€”lt_iff_le_and_ne
norm_eq_zero
re_toComplex πŸ“–mathematicalβ€”Complex.re
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Real
Real.instIntCast
β€”MulZeroClass.mul_zero
mul_one
sub_self
add_zero
sq_add_sq_of_nat_prime_of_not_irreducible πŸ“–mathematicalIrreducible
GaussianInt
Zsqrtd.instMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Zsqrtd.addGroupWithOne
Monoid.toNatPow
Nat.instMonoid
β€”Zsqrtd.norm_eq_one_iff
Zsqrtd.norm_natCast
mul_eq_one
Unique.instSubsingleton
ne_of_lt
Nat.Prime.one_lt
Fact.out
Nat.Prime.mul_eq_prime_sq_iff
sq
Nat.cast_mul
Nat.cast_natAbs
Zsqrtd.abs_norm
Int.instAddLeftMono
Int.instZeroLEOneClass
Zsqrtd.norm_mul
natAbs_norm_eq
toComplex_add πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Zsqrtd.instAdd
Complex.instAdd
β€”RingHom.map_add
toComplex_def πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Complex.instAdd
Complex.instIntCast
Zsqrtd.re
Complex.instMul
Zsqrtd.im
Complex.I
β€”β€”
toComplex_def' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Complex.instAdd
Complex.instIntCast
Complex.instMul
Complex.I
β€”β€”
toComplex_defβ‚‚ πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Real
Real.instIntCast
Zsqrtd.re
Zsqrtd.im
β€”Complex.ext
MulZeroClass.mul_zero
mul_one
sub_self
add_zero
zero_add
toComplex_div_im πŸ“–mathematicalβ€”Complex.im
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
instDiv
Real
Real.instIntCast
round
Real.instRing
Real.linearOrder
Real.instFloorRing
DivInvMonoid.toDiv
Complex.instDivInvMonoid
β€”toComplex_im_div
toComplex_div_re πŸ“–mathematicalβ€”Complex.re
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
instDiv
Real
Real.instIntCast
round
Real.instRing
Real.linearOrder
Real.instFloorRing
DivInvMonoid.toDiv
Complex.instDivInvMonoid
β€”toComplex_re_div
toComplex_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Complex.instZero
Zsqrtd.instZero
β€”toComplex_zero
toComplex_im πŸ“–mathematicalβ€”Complex.im
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Real
Real.instIntCast
β€”im_toComplex
toComplex_im_div πŸ“–mathematicalβ€”Complex.im
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
instDiv
Real
Real.instIntCast
round
Real.instRing
Real.linearOrder
Real.instFloorRing
DivInvMonoid.toDiv
Complex.instDivInvMonoid
β€”div_def
Rat.round_cast
Real.instIsStrictOrderedRing
neg_mul
one_mul
mul_neg
neg_neg
Int.cast_add
Int.cast_mul
div_eq_mul_inv
add_mul
Distrib.rightDistribClass
mul_assoc
Rat.cast_add
IsStrictOrderedRing.toCharZero
Rat.cast_mul
Rat.cast_intCast
intCast_re
Rat.cast_inv
intCast_real_norm
intCast_im
Int.cast_neg
Rat.cast_neg
im_toComplex
Complex.inv_im
Complex.inv_re
toComplex_inj πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
β€”toComplex_defβ‚‚
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
toComplex_injective πŸ“–mathematicalβ€”GaussianInt
Complex
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
β€”β€”
toComplex_mul πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Zsqrtd.instMul
Complex.instMul
β€”RingHom.map_mul
toComplex_neg πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Zsqrtd.instNeg
Complex.instNeg
β€”RingHom.map_neg
toComplex_one πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Zsqrtd.instOne
Complex.instOne
β€”RingHom.map_one
toComplex_re πŸ“–mathematicalβ€”Complex.re
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Real
Real.instIntCast
β€”re_toComplex
toComplex_re_div πŸ“–mathematicalβ€”Complex.re
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
instDiv
Real
Real.instIntCast
round
Real.instRing
Real.linearOrder
Real.instFloorRing
DivInvMonoid.toDiv
Complex.instDivInvMonoid
β€”div_def
Rat.round_cast
Real.instIsStrictOrderedRing
neg_mul
one_mul
mul_neg
neg_neg
Int.cast_add
Int.cast_mul
div_eq_mul_inv
add_mul
Distrib.rightDistribClass
mul_assoc
Rat.cast_add
IsStrictOrderedRing.toCharZero
Rat.cast_mul
Rat.cast_intCast
intCast_re
Rat.cast_inv
intCast_real_norm
intCast_im
Int.cast_neg
re_toComplex
Complex.inv_re
Complex.inv_im
sub_neg_eq_add
toComplex_star πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Star.star
Zsqrtd.instStar
CommSemiring.toSemiring
Complex.instCommSemiring
starRingEnd
Complex.instStarRing
β€”toComplex_defβ‚‚
Int.cast_neg
toComplex_sub πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Zsqrtd.addGroupWithOne
Complex.instSub
β€”RingHom.map_sub
toComplex_zero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
Zsqrtd.instZero
Complex.instZero
β€”RingHom.map_zero
to_real_im πŸ“–mathematicalβ€”Real
Real.instIntCast
Zsqrtd.im
Complex.im
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
β€”intCast_im
to_real_re πŸ“–mathematicalβ€”Real
Real.instIntCast
Zsqrtd.re
Complex.re
DFunLike.coe
RingHom
GaussianInt
Complex
Semiring.toNonAssocSemiring
Zsqrtd.instSemiring
Complex.instSemiring
RingHom.instFunLike
toComplex
β€”intCast_re

(root)

Definitions

NameCategoryTheorems
GaussianInt πŸ“–CompOp
37 mathmath: GaussianInt.toComplex_mul, GaussianInt.intCast_im, GaussianInt.toComplex_def', GaussianInt.toComplex_defβ‚‚, GaussianInt.toComplex_div_re, GaussianInt.norm_eq_zero, GaussianInt.toComplex_injective, GaussianInt.natAbs_norm_mod_lt, GaussianInt.norm_le_norm_mul_left, GaussianInt.toComplex_im_div, GaussianInt.toComplex_add, GaussianInt.toComplex_sub, GaussianInt.toComplex_star, GaussianInt.toComplex_def, GaussianInt.to_real_re, GaussianInt.div_def, GaussianInt.to_real_im, GaussianInt.toComplex_re_div, GaussianInt.toComplex_re, GaussianInt.toComplex_inj, GaussianInt.intCast_real_norm, GaussianInt.norm_mod_lt, GaussianInt.toComplex_im, GaussianInt.im_toComplex, GaussianInt.toComplex_neg, GaussianInt.re_toComplex, GaussianInt.toComplex_zero, GaussianInt.prime_of_nat_prime_of_mod_four_eq_three, GaussianInt.instNontrivial, GaussianInt.mod_def, GaussianInt.prime_iff_mod_four_eq_three_of_nat_prime, GaussianInt.toComplex_one, GaussianInt.normSq_div_sub_div_lt_one, GaussianInt.intCast_complex_norm, GaussianInt.intCast_re, GaussianInt.toComplex_div_im, GaussianInt.toComplex_eq_zero

---

← Back to Index