Documentation Verification Report

Birkhoff

📁 Source: Mathlib/Order/Birkhoff.lean

Statistics

MetricCount
DefinitionsbirkhoffFinset, birkhoffSet, birkhoffFinset, birkhoffSet, infIrredUpperSet, supIrredLowerSet, infIrredUpperSet, lowerSetSupIrred, supIrredLowerSet
9
TheoremsbirkhoffFinset_injective, supIrred_Iic, supIrred_iff_of_finite, birkhoffFinset_inf, birkhoffFinset_sup, birkhoffSet_apply, birkhoffSet_inf, birkhoffSet_sup, coe_birkhoffFinset, infIrredUpperSet_apply, infIrredUpperSet_surjective, supIrredLowerSet_apply, supIrredLowerSet_surjective, infIrredUpperSet_apply, infIrredUpperSet_symm_apply, supIrredLowerSet_apply, supIrredLowerSet_symm_apply, infIrred_Ici, infIrred_iff_of_finite, exists_birkhoff_representation
20
Total29

LatticeHom

Definitions

NameCategoryTheorems
birkhoffFinset 📖CompOp
1 mathmath: birkhoffFinset_injective
birkhoffSet 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
birkhoffFinset_injective 📖mathematicalFinset
SupIrred
Lattice.toSemilatticeSup
DistribLattice.toLattice
DFunLike.coe
LatticeHom
Finset.instLattice
instFunLike
birkhoffFinset
RelEmbedding.injective

LowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
supIrred_Iic 📖mathematicalSupIrred
LowerSet
Preorder.toLE
PartialOrder.toPreorder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Iic
Iic_ne_bot
IsMin.eq_bot
mem_Iic_iff
le_refl
LE.le.antisymm
LE.le.trans_eq
le_sup_left
Iic_le
le_sup_right
supIrred_iff_of_finite 📖mathematicalSupIrred
LowerSet
Preorder.toLE
PartialOrder.toPreorder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Iic
Set.Finite.exists_maximal
instIsTransLe
Set.toFinite
Subtype.finite
coe_nonempty
SupIrred.ne_bot
erase_sup_Iic
le_imp_eq_iff_le_imp_ge'
LT.lt.ne
erase_lt
supIrred_Iic

OrderEmbedding

Definitions

NameCategoryTheorems
birkhoffFinset 📖CompOp
3 mathmath: birkhoffFinset_inf, coe_birkhoffFinset, birkhoffFinset_sup
birkhoffSet 📖CompOp
4 mathmath: coe_birkhoffFinset, birkhoffSet_inf, birkhoffSet_sup, birkhoffSet_apply
infIrredUpperSet 📖CompOp
2 mathmath: infIrredUpperSet_surjective, infIrredUpperSet_apply
supIrredLowerSet 📖CompOp
2 mathmath: supIrredLowerSet_apply, supIrredLowerSet_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
birkhoffFinset_inf 📖mathematicalDFunLike.coe
OrderEmbedding
Finset
SupIrred
Lattice.toSemilatticeSup
DistribLattice.toLattice
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Finset.partialOrder
instFunLikeOrderEmbedding
birkhoffFinset
SemilatticeInf.toMin
Finset.instInter
birkhoffSet_inf
OrderIso.coe_toOrderEmbedding
Fintype.finsetEquivSet_symm_apply
Set.toFinset_inter
birkhoffFinset_sup 📖mathematicalDFunLike.coe
OrderEmbedding
Finset
SupIrred
Lattice.toSemilatticeSup
DistribLattice.toLattice
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Finset.partialOrder
instFunLikeOrderEmbedding
birkhoffFinset
SemilatticeSup.toMax
Finset.instUnion
birkhoffSet_sup
OrderIso.coe_toOrderEmbedding
Fintype.finsetEquivSet_symm_apply
Set.toFinset_union
birkhoffSet_apply 📖mathematicalDFunLike.coe
OrderEmbedding
Set
SupIrred
Lattice.toSemilatticeSup
DistribLattice.toLattice
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Set.instLE
instFunLikeOrderEmbedding
birkhoffSet
SetLike.coe
LowerSet
LowerSet.instSetLike
OrderIso
LowerSet.instPartialOrder
instFunLikeOrderIso
OrderIso.lowerSetSupIrred
OrderBot.instSubsingleton
bot_nonempty
birkhoffSet_inf 📖mathematicalDFunLike.coe
OrderEmbedding
Set
SupIrred
Lattice.toSemilatticeSup
DistribLattice.toLattice
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Set.instLE
instFunLikeOrderEmbedding
birkhoffSet
SemilatticeInf.toMin
Set.instInter
InfHomClass.map_inf
OrderIsoClass.toInfHomClass
OrderIso.instOrderIsoClass
inf_of_le_left
IsEmpty.instSubsingleton
Unique.instSubsingleton
instIsEmptySubtype
birkhoffSet_sup 📖mathematicalDFunLike.coe
OrderEmbedding
Set
SupIrred
Lattice.toSemilatticeSup
DistribLattice.toLattice
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Set.instLE
instFunLikeOrderEmbedding
birkhoffSet
SemilatticeSup.toMax
Set.instUnion
SupHomClass.map_sup
LatticeHomClass.toSupHomClass
OrderIsoClass.toLatticeHomClass
OrderIso.instOrderIsoClass
sup_of_le_left
IsEmpty.instSubsingleton
Unique.instSubsingleton
instIsEmptySubtype
coe_birkhoffFinset 📖mathematicalSetLike.coe
Finset
SupIrred
Lattice.toSemilatticeSup
DistribLattice.toLattice
Finset.instSetLike
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Finset.partialOrder
instFunLikeOrderEmbedding
birkhoffFinset
Set
Set.instLE
birkhoffSet
OrderIso.coe_toOrderEmbedding
Fintype.finsetEquivSet_symm_apply
Set.coe_toFinset
infIrredUpperSet_apply 📖mathematicalDFunLike.coe
OrderEmbedding
UpperSet
Preorder.toLE
PartialOrder.toPreorder
InfIrred
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
UpperSet.completeLattice
UpperSet.instPartialOrder
instFunLikeOrderEmbedding
infIrredUpperSet
UpperSet.Ici
UpperSet.infIrred_Ici
infIrredUpperSet_surjective 📖mathematicalUpperSet
Preorder.toLE
PartialOrder.toPreorder
InfIrred
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
UpperSet.completeLattice
DFunLike.coe
OrderEmbedding
UpperSet.instPartialOrder
instFunLikeOrderEmbedding
infIrredUpperSet
UpperSet.infIrred_Ici
supIrredLowerSet_apply 📖mathematicalDFunLike.coe
OrderEmbedding
LowerSet
Preorder.toLE
PartialOrder.toPreorder
SupIrred
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
LowerSet.completeLattice
LowerSet.instPartialOrder
instFunLikeOrderEmbedding
supIrredLowerSet
LowerSet.Iic
LowerSet.supIrred_Iic
supIrredLowerSet_surjective 📖mathematicalLowerSet
Preorder.toLE
PartialOrder.toPreorder
SupIrred
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
LowerSet.completeLattice
DFunLike.coe
OrderEmbedding
LowerSet.instPartialOrder
instFunLikeOrderEmbedding
supIrredLowerSet
LowerSet.supIrred_Iic

OrderIso

Definitions

NameCategoryTheorems
infIrredUpperSet 📖CompOp
2 mathmath: infIrredUpperSet_symm_apply, infIrredUpperSet_apply
lowerSetSupIrred 📖CompOp
1 mathmath: OrderEmbedding.birkhoffSet_apply
supIrredLowerSet 📖CompOp
2 mathmath: supIrredLowerSet_symm_apply, supIrredLowerSet_apply

Theorems

NameKindAssumesProvesValidatesDepends On
infIrredUpperSet_apply 📖mathematicalDFunLike.coe
OrderIso
UpperSet
Preorder.toLE
PartialOrder.toPreorder
InfIrred
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
UpperSet.completeLattice
UpperSet.instPartialOrder
instFunLikeOrderIso
infIrredUpperSet
UpperSet.Ici
UpperSet.infIrred_Ici
infIrredUpperSet_symm_apply 📖mathematicalDFunLike.coe
OrderIso
UpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
InfIrred
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
UpperSet.completeLattice
UpperSet.instPartialOrder
instFunLikeOrderIso
symm
infIrredUpperSet
Finset.inf
Set.toFinset
SetLike.coe
UpperSet.instSetLike
UpperSet.infIrred_iff_of_finite
nonempty_fintype
Set.toFinset_Ici
Finset.inf_Ici
supIrredLowerSet_apply 📖mathematicalDFunLike.coe
OrderIso
LowerSet
Preorder.toLE
PartialOrder.toPreorder
SupIrred
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
LowerSet.completeLattice
LowerSet.instPartialOrder
instFunLikeOrderIso
supIrredLowerSet
LowerSet.Iic
LowerSet.supIrred_Iic
supIrredLowerSet_symm_apply 📖mathematicalDFunLike.coe
OrderIso
LowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SupIrred
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
LowerSet.completeLattice
LowerSet.instPartialOrder
instFunLikeOrderIso
symm
supIrredLowerSet
Finset.sup
Set.toFinset
SetLike.coe
LowerSet.instSetLike
LowerSet.supIrred_iff_of_finite
nonempty_fintype
Set.toFinset_Iic
Finset.sup_Iic

UpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
infIrred_Ici 📖mathematicalInfIrred
UpperSet
Preorder.toLE
PartialOrder.toPreorder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Ici
Ici_ne_top
IsMax.eq_top
mem_Ici_iff
le_refl
le_antisymm
le_Ici
LE.le.trans
Eq.ge
inf_le_left
inf_le_right
infIrred_iff_of_finite 📖mathematicalInfIrred
UpperSet
Preorder.toLE
PartialOrder.toPreorder
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
completeLattice
Ici
Set.Finite.exists_minimal
instIsTransLe
Set.toFinite
Subtype.finite
coe_nonempty
InfIrred.ne_top
erase_inf_Ici
le_imp_eq_iff_le_imp_ge
LT.lt.ne'
lt_erase
infIrred_Ici

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_birkhoff_representation 📖mathematicalFinset
DFunLike.coe
LatticeHom
DistribLattice.toLattice
Finset.instLattice
LatticeHom.instFunLike
nonempty_fintype
LatticeHom.birkhoffFinset_injective

---

← Back to Index