📁 Source: Mathlib/Order/BooleanAlgebra/Set.lean
instBooleanAlgebra
ite
subset_compl_left
subset_compl_right
diff_ssubset_of_nonempty
disjoint_compl_left
disjoint_compl_right
compl_def
compl_diff
compl_empty
compl_empty_iff
compl_eq_univ_diff
compl_inter
compl_inter_self
compl_ne_eq_singleton
compl_ne_univ
compl_setOf
compl_singleton_eq
compl_subset_comm
compl_subset_compl
compl_subset_compl_of_subset
compl_subset_iff_union
compl_union
compl_union_self
compl_univ
compl_univ_iff
diff_compl
diff_diff
diff_diff_cancel_left
diff_diff_comm
diff_diff_eq_sdiff_union
diff_diff_right
diff_diff_right_self
diff_empty
diff_eq_compl_inter
diff_eq_empty
diff_insert_of_notMem
diff_inter
diff_inter_diff
diff_inter_distrib_right
diff_inter_right_comm
diff_inter_self
diff_inter_self_eq_diff
diff_nonempty
diff_self
diff_self_inter
diff_singleton_eq_self
diff_singleton_ssubset
diff_singleton_subset_iff
diff_ssubset_left_iff
diff_subset
diff_subset_comm
diff_subset_compl
diff_subset_diff
diff_subset_diff_iff_subset
diff_subset_diff_left
diff_subset_diff_right
diff_subset_iff
diff_union_diff_cancel
diff_union_diff_cancel'
diff_union_inter
diff_union_of_subset
diff_union_self
diff_univ
disjoint_compl_left_iff_subset
disjoint_compl_right_iff_subset
disjoint_of_subset_iff_left_eq_empty
disjoint_sdiff_inter
disjoint_sdiff_left
disjoint_sdiff_right
empty_diff
inl_compl_union_inr_compl
insert_diff_insert
insert_diff_of_mem
insert_diff_of_notMem
insert_diff_self_of_mem
insert_diff_self_of_notMem
insert_diff_singleton
insert_diff_singleton_comm
insert_diff_subset
insert_erase_invOn
inter_compl_nonempty_iff
inter_compl_self
inter_diff_assoc
inter_diff_distrib_left
inter_diff_distrib_right
inter_diff_right_comm
inter_diff_self
inter_eq_compl_compl_union_compl
inter_sdiff_left_comm
inter_subset
inter_subset_ite
inter_union_compl
inter_union_diff
ite_compl
ite_diff_self
ite_empty
ite_empty_left
ite_empty_right
ite_eq_of_subset_left
ite_eq_of_subset_right
ite_inter
ite_inter_compl_self
ite_inter_inter
ite_inter_of_inter_eq
ite_inter_self
ite_left
ite_mono
ite_right
ite_same
ite_subset_union
ite_univ
mem_compl
mem_compl_singleton_iff
mem_diff_singleton
mem_diff_singleton_empty
mem_of_mem_diff
nonempty_compl
nonempty_compl_of_nontrivial
notMem_compl_iff
notMem_diff_of_mem
notMem_of_mem_compl
notMem_of_mem_diff
pair_diff_left
pair_diff_right
sdiff_inter_right_comm
sdiff_sep_self
ssubset_iff_sdiff_singleton
subset_compl_comm
subset_compl_iff_disjoint_left
subset_compl_iff_disjoint_right
subset_compl_singleton_iff
subset_diff
subset_diff_singleton
subset_diff_union
subset_insert_diff_singleton
subset_insert_iff
subset_inter_union_compl_left
subset_inter_union_compl_right
subset_ite
subset_union_compl_iff_inter_subset
union_compl_self
union_diff_cancel
union_diff_cancel'
union_diff_cancel_left
union_diff_cancel_right
union_diff_distrib
union_diff_left
union_diff_right
union_diff_self
union_eq_compl_compl_inter_compl
union_eq_diff_union_diff_union_inter
union_inter_compl_left_subset
union_inter_compl_right_subset
Disjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set.instHasSubset
Compl.compl
Set.instCompl
Set.subset_compl_iff_disjoint_left
Set.subset_compl_iff_disjoint_right
Set.Nonempty
Set.instHasSSubset
Set.instSDiff
Set.inter_eq_self_of_subset_right
Set.disjoint_compl_left_iff_subset
Set.disjoint_compl_right_iff_subset
pairwiseDisjoint_range_iff
pairwise_disjoint_Ioc_zpow
pairwise_disjoint_Ioo_add_zsmul
inter_symmDiff_distrib_left
functorToTypes_obj
Finite.inf_of_right
CategoryTheory.Limits.Types.binaryCofan_isColimit_iff
Sym2.disjoint_diagSet_fromRel
pairwise_disjoint_Ico_zsmul
SSet.degenerate_eq_top_of_hasDimensionLT
pairwise_disjoint_Ioo_mul_zpow
MeasureTheory.preimage_spanningSetsIndex_singleton
sdiff_singleton_wcovBy
image_symmDiff
Finset.disjoint_coe
Finset.pairwiseDisjoint_coe
BoxIntegral.Prepartition.isPartitionDisjUnionOfEqDiff
SetRel.core_mono
IsClopen.himp
toFinset_symmDiff
isCompl_range_some_none
biUnion_range_succ_disjointed
indicator_symmDiff
pairwise_disjoint_fiber
symmDiff_def
covBy_iff_exists_sdiff_singleton
instWellFoundedLTSubtypeSetFinite
SetRel.prod_comp_prod
disjoint_image_left
sdiff_singleton_covBy
MeasureTheory.spanningSetsIndex_eq_iff
Types.monoOverEquivalenceSet_inverse_map
SSet.Subcomplex.degenerate_eq_top_iff
pairwise_disjoint_Ioc_zsmul
disjointed_eq_inter_compl
mem_symmDiff
SetRel.image_core_gc
pairwise_disjoint_Ioo_add_intCast
covBy_insert
HasSubset.Subset.disjoint_compl_right
iUnion_disjointed
disjoint_of_sSup_disjoint
SSet.nonDegenerate_eq_bot_of_hasDimensionLT
SimpleGraph.edgeSet_eq_iff
pairwise_disjoint_Ioc_add_zsmul
disjoint_powerset_insert
disjoint_toFinset
pairwise_disjoint_Ioc_mul_zpow
pairwise_disjoint_Ico_mul_zpow
offDiag_mono
Topology.IsConstructible.himp
Sylow.orbit_eq_top
SimpleGraph.disjoint_edgeSet
SSet.hasDimensionLT_iff
MeasurableSet.coe_bot
union_symmDiff_subset
SSet.skeleton_obj_eq_top
pairwise_disjoint_Ico_add_intCast
Int.isCompl_even_odd
CategoryTheory.Subfunctor.Subpresheaf.bot_obj
Finite.toFinset_symmDiff
nsmul_right_monotone
mulIndicator_symmDiff
MeasurableSet.bihimp
disjoint_prod
Subgroup.closure_mul_image_mul_eq_top
indicator_eq_zero'
disjoint_image_iff
disjoint_pi
MeasurableSet.himp
MvPolynomial.zeroLocus_bot
indicator_eq_zero
empty_covBy_singleton
disjoint_of_sSup_disjoint_of_le_of_le
ContinuousMap.sublattice_closure_eq_top
fintypeToFinBoolAlgOp_map
Definable.himp
pow_right_monotone
typeToBoolAlgOp_map
MeasurableSet.coe_himp
apply_indicator_symmDiff
pairwise_disjoint_Ioo_zpow
Finite.inf_of_left
gc_Ici_sInf
disjoint_image_image
symmDiff_subset_union
Function.disjoint_mulSupport_iff
SimpleGraph.compl_neighborSet_disjoint
biUnion_Iic_disjointed
CategoryTheory.Subfunctor.Subpresheaf.top_obj
zero_mem_neg_add_iff
pairwise_disjoint_Ioc_intCast
Types.monoOverEquivalenceSet_functor_map
pairwise_disjoint_Ioo_zsmul
CategoryTheory.Limits.Types.isPushout_of_bicartSq
Pi.support_single_disjoint
HasSubset.Subset.disjoint_compl_left
SimpleGraph.fromEdgeSet_disjoint
MeasureTheory.NullMeasurableSet.disjointed
SetRel.image_mono
Function.Injective.image_strictMono
CategoryTheory.Subfunctor.bot_obj
locallyFinsuppWithin.logCounting_divisor
disjoint_image_right
Types.monoOverEquivalenceSet_functor_obj
MeasureTheory.mem_disjointed_spanningSetsIndex
Function.mulSupport_disjoint_iff
pairwise_disjoint_Ioc_add_intCast
eq_top_of_card_le_of_finite
Finite.symmDiff_congr
inter_symmDiff_distrib_right
SetRel.preimage_mono
Finset.coe_symmDiff
Function.locallyFinsuppWithin.logCounting_divisor_eq_circleAverage_sub_const
mulIndicator_eq_one'
Function.support_disjoint_iff
isCompl_range_inl_range_inr
MeasureTheory.OuterMeasure.isCaratheodory_disjointed
one_notMem_inv_mul_iff
preimage_eq_empty_iff
SSet.horn_obj_zero
disjoint_image_inl_image_inr
TopologicalSpace.Clopens.coe_himp
gc_sSup_Iic
pairwise_disjoint_Ico_zpow
SSet.skeletonOfMono_obj_eq_top
disjoint_preimage_iff
apply_mulIndicator_symmDiff
SimpleGraph.IsCompleteBetween.disjoint
zero_notMem_sub_iff
one_notMem_div_iff
Finite.disjoint_toFinset
MeasurableSet.disjointed
pairwiseDisjoint_range_singleton
SSet.HasDimensionLT.degenerate_eq_top
MeasurableSet.coe_top
Finite.symmDiff
disjoint_diagonal_offDiag
SetRel.gc_leftDual_rightDual
symmDiff_eq_empty
mulIndicator_eq_one
Types.monoOverEquivalenceSet_inverse_obj
one_mem_div_iff
disjointed_subset
pairwise_disjoint_Ico_intCast
MvPolynomial.zeroLocus_top
SimpleGraph.disjoint_fromEdgeSet
CategoryTheory.Subfunctor.top_obj
pairwiseDisjoint_fiber
zero_notMem_neg_add_iff
disjoint_image_inl_range_inr
subsingleton_setOf_mem_iff_pairwise_disjoint
pairwiseDisjoint_image_right_iff
Types.monoOverEquivalenceSet_unitIso
FirstOrder.Language.DefinableSet.coe_himp
symmDiff_nonempty
preimage_symmDiff
functorToTypes_map
Finite.sup
Nat.isCompl_even_odd
subset_image_symmDiff
zero_mem_sub_iff
preimage_find_eq_disjointed
pairwiseDisjoint_image_left_iff
monotone_image
wcovBy_insert
instPreservesColimitsOfShapeFunctorToTypesOfIsFilteredOrEmpty
covBy_iff_exists_insert
disjoint_range_inl_image_inr
pairwise_disjoint_Ico_add_zsmul
CompactSpace.elim_nhds_subcover
Types.monoOverEquivalenceSet_counitIso
MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
fintypeToFinBoolAlgOp_obj
PMF.support_uniformOfFintype
Pi.mulSupport_mulSingle_disjoint
prod_subset_compl_diagonal_iff_disjoint
irreducibleSpace_def
Submodule.IsPrimary.mem_or_mem
MeasureTheory.sum_restrict_disjointed_spanningSets
symmDiff_union_subset
pairwise_disjoint_Ioo_intCast
biUnion_Ioc_disjointed_of_monotone
TopologicalSpace.CompactOpens.coe_himp
MeasureTheory.IsSetRing.disjointed_mem
Function.disjoint_support_iff
union_symmDiff_union_subset
one_mem_inv_mul_iff
disjoint_univ_pi
typeToBoolAlgOp_obj
pairwiseDisjoint_singleton_iff_injOn
PartialEquiv.piecewise_source
mulIndicator_preimage
ite_inter_closure_compl_eq_of_inter_frontier_eq
EqOn.piecewise_ite'
PartialEquiv.IsImage.leftInvOn_piecewise
MeasurableSet.ite
continuousOn_piecewise_ite'
continuousOn_piecewise_ite
preimage_ite
PartialEquiv.piecewise_target
EqOn.piecewise_ite
OpenPartialHomeomorph.IsImage.leftInvOn_piecewise
indicator_preimage
piecewise_preimage
MapsTo.piecewise_ite
IsOpen.ite'
IsOpen.ite
ite_inter_closure_eq_of_inter_frontier_eq
instCompl
setOf
instMembership
instSDiff
instUnion
compl_sdiff
himp_eq
instEmptyCollection
univ
compl_bot
compl_eq_bot
top_sdiff
instInter
compl_inf
compl_inf_eq_bot
instSingletonSet
compl_compl
Nonempty
Iff.not
nonempty_iff_ne_empty
instHasSubset
compl_le_iff_compl_le
compl_le_compl_iff_le
eq_univ_iff_forall
compl_sup
union_comm
compl_top
compl_eq_top
sdiff_compl
sdiff_sdiff_left
sdiff_sdiff_eq_self
sdiff_sdiff_comm
sdiff_sdiff_eq_sdiff_sup
sdiff_sdiff_right'
sdiff_sdiff_right_self
sdiff_bot
diff_eq
inter_comm
sdiff_eq_bot_iff
instInsert
sdiff_inf
sdiff_sup
inf_sdiff
inter_right_comm
inf_sdiff_self_left
sdiff_inf_self_right
sdiff_self
sdiff_inf_self_left
sdiff_eq_self_iff_disjoint
instHasSSubset
union_singleton
sdiff_lt_left
not_disjoint_iff_nonempty_inter
sdiff_le
sdiff_le_comm
inter_subset_left
sdiff_le_sdiff
sdiff_le_sdiff_iff_le
sdiff_le_sdiff_right
sdiff_le_sdiff_left
sdiff_le_iff
sdiff_sup_sdiff_cancel
sdiff_sup_sdiff_cancel'
sup_inf_sdiff
Subset.antisymm
union_subset
sdiff_sup_self
subset_univ
disjoint_compl_left_iff
disjoint_compl_right_iff
disjoint_of_le_iff_left_eq_bot
disjoint_of_subset_right
inter_subset_right
disjoint_sdiff_self_left
disjoint_sdiff_self_right
bot_sdiff
image
ext
mem_singleton_iff
InvOn
not_subset
inf_compl_eq_bot
inf_sdiff_assoc
inf_sdiff_distrib_left
inf_sdiff_distrib_right
inf_sdiff_self_right
and_iff_not_or_not
inf_sdiff_left_comm
imp_iff_not_or
ite.eq_1
inter_empty
empty_union
empty_inter
union_empty
union_inter_distrib_right
inter_assoc
inter_self
union_subset_union
inter_subset_inter_left
inter_univ
ne_univ_iff_exists_notMem
exists_ne
mem_singleton
pair_comm
sdiff_inf_right_comm
le_compl_iff_le_compl
le_compl_iff_disjoint_left
le_compl_iff_disjoint_right
singleton_subset_iff
le_iff_subset
le_sdiff
subset_inter
le_sdiff_sup
subset_refl
instReflSubset
inter_union_distrib_right
univ_inter
instIsEmptyFalse
IsCompl.le_sup_right_iff_inf_left_le
isCompl_compl
em
sup_sdiff_cancel_right
sup_sdiff_cancel'
Disjoint.sup_sdiff_cancel_left
disjoint_iff_inf_le
Disjoint.sup_sdiff_cancel_right
sup_sdiff
sup_sdiff_left_self
sup_sdiff_right_self
sup_sdiff_self
or_iff_not_and_not
sup_eq_sdiff_sup_sdiff_sup_inf
---
← Back to Index