Documentation Verification Report

BooleanGenerators

📁 Source: Mathlib/Order/BooleanGenerators.lean

Statistics

MetricCount
DefinitionsBooleanGenerators, booleanAlgebra_of_sSup_eq_top, distribLattice_of_sSup_eq_top
3
Theoremsatomistic, complementedLattice_of_sSup_eq_top, eq_atoms_of_sSup_eq_top, finitelyAtomistic, isAtom, isAtomistic_of_sSup_eq_top, mem_of_isAtom_of_le_sSup_atoms, mono, sSup_inter, sSup_le_sSup_iff_of_atoms
10
Total13

IsCompactlyGenerated

Definitions

NameCategoryTheorems
BooleanGenerators 📖CompData
1 mathmath: LieAlgebra.IsSemisimple.booleanGenerators

IsCompactlyGenerated.BooleanGenerators

Definitions

NameCategoryTheorems
booleanAlgebra_of_sSup_eq_top 📖CompOp
distribLattice_of_sSup_eq_top 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
atomistic 📖mathematicalIsCompactlyGenerated.BooleanGenerators
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instHasSubset
IsCompactlyGenerated.exists_sSup_eq
CompleteLattice.isCompactElement_iff_exists_le_sSup_of_le_sSup
finitelyAtomistic
Set.Subset.trans
Finset.sup_id_eq_sSup
sSup_le
le_antisymm
LE.le.trans
le_sSup
sSup_le_sSup
complementedLattice_of_sSup_eq_top 📖mathematicalIsCompactlyGenerated.BooleanGenerators
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
ComplementedLattice
ConditionallyCompleteLattice.toLattice
isAtomistic_of_sSup_eq_top
complementedLattice_of_isAtomistic
DistribLattice.instIsModularLattice
eq_atoms_of_sSup_eq_top 📖mathematicalIsCompactlyGenerated.BooleanGenerators
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
setOf
IsAtom
ConditionallyCompletePartialOrderSup.toPartialOrder
BoundedOrder.toOrderBot
le_antisymm
isAtom
atomistic
LE.le.trans
le_top
Eq.ge
mem_of_isAtom_of_le_sSup_atoms
sSup_le_sSup
finitelyAtomistic 📖mathematicalIsCompactlyGenerated.BooleanGenerators
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
IsCompactElement
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Preorder.toLE
PartialOrder.toPreorder
Finset.sup
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
BoundedOrder.toOrderBot
SemilatticeSup.toPartialOrder
CompleteLattice.toBoundedOrder
Finset.instHasSubset
isAtom 📖mathematicalIsCompactlyGenerated.BooleanGenerators
Set
Set.instMembership
IsAtom
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
isAtomistic_of_sSup_eq_top 📖mathematicalIsCompactlyGenerated.BooleanGenerators
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsAtomistic
ConditionallyCompletePartialOrderSup.toPartialOrder
BoundedOrder.toOrderBot
CompleteLattice.isAtomistic_iff
atomistic
le_top
isAtom
mem_of_isAtom_of_le_sSup_atoms 📖mathematicalIsCompactlyGenerated.BooleanGenerators
IsAtom
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
Set
Set.instMembership
atomistic
Set.eq_empty_or_nonempty
sSup_empty
le_sSup
IsAtom.le_iff_eq
isAtom
mono 📖IsCompactlyGenerated.BooleanGenerators
Set
Set.instHasSubset
isAtom
finitelyAtomistic
le_trans
sSup_inter 📖mathematicalIsCompactlyGenerated.BooleanGenerators
Set
Set.instHasSubset
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Set.instInter
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
le_antisymm
le_inf
sSup_le_sSup
Set.inter_subset_left
Set.inter_subset_right
atomistic
LE.le.trans
inf_le_left
sSup_le
le_sSup
mem_of_isAtom_of_le_sSup_atoms
mono
isAtom
Eq.ge
inf_le_right
sSup_le_sSup_iff_of_atoms 📖mathematicalIsCompactlyGenerated.BooleanGenerators
Set
Set.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
mem_of_isAtom_of_le_sSup_atoms
mono
isAtom
LE.le.trans
le_sSup
sSup_le_sSup

---

← Back to Index