Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Order/BoundedOrder/Basic.lean

Statistics

MetricCount
DefinitionsinstBoundedOrder, BoundedOrder, toOrderBot, toOrderTop, rec, rec, OrderBot, toBot, instBot, instBoundedOrder, instOrderBot, instOrderTop, instTop, OrderTop, toTop, instBotForall, instBoundedOrder, instOrderBot, instOrderTop, instTopForall, instBot, instBoundedOrder, instOrderBot, instOrderTop, instTop, boundedOrder, orderBot, orderTop, instBot, instBoundedOrder, instOrderBot, instOrderTop, instTop, botOrderOrNoBotOrder, topOrderOrNoTopOrder
35
TheoremsinstSubsingleton, eq_bot, eq_top, eq_bot, eq_top, bot_lt, lt_top, ne_bot, ne_top, bot_lt, bot_lt', lt_top, lt_top', bot_le, ext_bot, instSubsingleton, ofDual_bot, ofDual_eq_bot, ofDual_eq_top, ofDual_top, toDual_bot, toDual_eq_bot, toDual_eq_top, toDual_top, ext_top, instSubsingleton, le_top, bot_apply, bot_comp, bot_def, top_apply, top_comp, top_def, fst_bot, fst_top, snd_bot, snd_top, coe_bot, coe_eq_bot_iff, coe_eq_top_iff, coe_top, mk_bot, mk_eq_bot_iff, mk_eq_top_iff, mk_top, down_bot, down_top, up_bot, up_top, bot_eq_false, bot_le, bot_lt_iff_ne_bot, bot_lt_of_lt, bot_lt_top, bot_ne_top, bot_notMem_iff, bot_unique, dite_ne_bot, dite_ne_top, eq_bot_iff, eq_bot_mono, eq_bot_of_bot_eq_top, eq_bot_of_minimal, eq_bot_of_top_eq_bot, eq_bot_or_bot_lt, eq_top_iff, eq_top_mono, eq_top_of_bot_eq_top, eq_top_of_top_eq_bot, eq_top_or_lt_top, isBot_bot, isBot_iff_eq_bot, isMax_iff_eq_top, isMax_top, isMin_bot, isMin_iff_eq_bot, isTop_iff_eq_top, isTop_top, ite_ne_bot, ite_ne_top, le_bot_iff, le_top, lt_top_iff_ne_top, lt_top_of_lt, ne_bot_of_gt, ne_bot_of_le_ne_bot, ne_top_of_le_ne_top, ne_top_of_lt, not_bot_lt_iff, not_isBot_iff_ne_bot, not_isMax_bot, not_isMax_iff_ne_top, not_isMin_iff_ne_bot, not_isMin_top, not_isTop_iff_ne_top, not_lt_bot, not_lt_top_iff, not_top_lt, subsingleton_iff_bot_eq_top, subsingleton_iff_top_eq_bot, subsingleton_of_bot_eq_top, subsingleton_of_top_eq_bot, subsingleton_of_top_le_bot, top_eq_true, top_le_iff, top_ne_bot, top_notMem_iff, top_unique
108
Total143

Bool

Definitions

NameCategoryTheorems
instBoundedOrder πŸ“–CompOp
1 math, 2 bridgemath: instIsSimpleOrder
bridge: bot_eq_false, top_eq_true

BoundedOrder

Definitions

NameCategoryTheorems
toOrderBot πŸ“–CompOp
655 math, 1 bridgemath: Algebra.range_ofId, sInf_univ, CategoryTheory.sheafBotEquivalence_functor, Subalgebra.LinearDisjoint.inf_eq_bot, Submodule.rTensorOne_symm_apply, coinduced_bot, AlgebraicGeometry.Scheme.bot_mem_grothendieckTopology, Concept.intent_bot, iSupIndep.injOn_iInf, IntermediateField.LinearDisjoint.iff_inf_eq_bot, MeasurableSpace.comap_const, MonoidHom.ker_transferSylow_disjoint, Submodule.comm_trans_lTensorOne, IntermediateField.coe_algebraMap_over_bot, Set.disjoint_or_nonempty_inter, RingCon.toCon_eq_bot, NonUnitalStarAlgebra.mem_bot, IsDedekindDomain.HeightOneSpectrum.iInf_localization_eq_bot, Algebra.adjoin_singleton_intCast, BoundedOrderHomClass.map_bot, IsCompl.inf_left_eq_bot_iff, MeasurableSpace.comap_bot, codisjoint_bot, SeminormedGroup.disjoint_nhds, IntermediateField.coe_bot, isSimpleOrder_iff_isAtom_top, Submodule.mulMap_one_right_eq, CompleteLattice.isCompactElement_finsetSup, MeasureTheory.Measure.mutuallySingular_tfae, iSupIndep.disjoint_biSup, IntermediateField.lift_insepDegree_bot', Filter.disjoint_comap_iff, NonUnitalAlgebra.coe_bot, Equiv.Perm.disjoint_of_disjoint_support, sSup_eq_bot, NonUnitalStarAlgebra.coe_bot, IsCompactlyGenerated.BooleanGenerators.isAtom, iSup_false, algebraicClosure.algebraicClosure_eq_bot, AffineSubspace.comap_bot, BoundedLatticeHom.coe_comp_sup_hom', Module.End.invtSubmodule.disjoint_mk_iff, bot_lt_iSup, Directed.disjoint_iSup_right, CategoryTheory.Presieve.isSheaf_bot, Set.disjoint_union_right, MeasurableSpace.generateFrom_empty, IsGaloisGroup.fixedPoints_top, RingCon.comap_bot, MeasureTheory.condLExp_bot', AddCommMonoid.primaryComponent.disjoint, IntermediateField.botEquiv_symm, Subalgebra.op_bot, IsModularLattice.exists_disjoint_and_sup_eq, LieModule.disjoint_genWeightSpaceOf, Filter.disjoint_cocompact_left, Finset.Nonempty.sup_eq_top_iff, disjoint_nhds_cocompact, Algebra.adjoin_singleton_algebraMap, IntermediateField.relfinrank_bot_right, Coheyting.boundary_top, LTSeries.exists_relSeries_covBy_and_head_eq_bot_and_last_eq_bot, InfiniteGalois.mem_bot_iff_fixed, ProbabilityTheory.condIndep_bot_left, LieAlgebra.IsSemisimple.booleanGenerators, Polynomial.IsSplittingField.splits_iff, Set.disjoint_singleton_right, Partition.bot_notMem, t1Space_iff_disjoint_nhds_pure, bot_lt_affineSpan, Filter.disjoint_principal_left, isSeparatedMap_iff_disjoint_nhds, StarSubalgebra.bot_toSubalgebra, iSupIndep.pairwiseDisjoint, Subfield.splits_bot, Algebra.toSubring_bot, Subalgebra.LinearDisjoint.inf_eq_bot_of_commute, sSup_empty, LieSubmodule.disjoint_toSubmodule, IntermediateField.adjoin_zero, Filter.disjoint_comap_iff_map', Subalgebra.algebra_isAlgebraic_bot_right, T25Space.t2_5, Subalgebra.comm_trans_rTensorBot, AffineSubspace.not_wSameSide_bot, AlgebraicGeometry.Scheme.bot_mem_precoverage, Complementeds.mk_bot, Subalgebra.algebra_isAlgebraic_bot_left_iff, AddCon.toSetoid_bot, Equiv.Perm.disjoint_closure_of_disjoint_support, DirectedOn.disjoint_sSup_left, TopologicalSpace.Closeds.coe_eq_empty, sSupIndep.pairwiseDisjoint, TopologicalSpace.NoetherianSpace.exists_finset_irreducible, Metric.disjoint_cobounded_nhdsSet, sSup_atoms_le_eq, bot_covBy_top, Set.Iic.isCompl_inf_inf_of_isCompl_of_le, sSupHom.coe_bot, disjoint_rootsOfUnity_of_coprime, IsIntegrallyClosedIn.integralClosure_eq_bot, integralClosure_idem, instIsAbelianGaloisSubtypeMemIntermediateFieldBot, CategoryTheory.Sieve.functorPullback_bot, Algebra.mem_bot, CategoryTheory.Sieve.generate_bot, Filter.HasBasis.disjoint_iff_right, induced_topology_pure, FirstOrder.Language.Substructure.small_bot, disjoint_top, WellFoundedGT.finite_ne_bot_of_iSupIndep, Set.disjoint_left, Set.disjoint_singleton_left, Set.disjoint_right, StarSubalgebra.mem_bot, IntermediateField.bot_toSubalgebra, Algebra.toSubmodule_bot, Algebra.map_bot, Subfield.mem_bot_iff_pow_eq_self, LatticeHom.withTopWithBot'_toFun, Subfield.isTotallyReal_bot, Metric.disjoint_nhds_cobounded, Filter.disjoint_atTop_principal_Iio, Finset.Icc_bot_top, Algebra.adjoin_singleton_zero, Prop.bot_eq_false, Finset.inf_sup, Algebra.coe_bot, Setoid.injective_iff_ker_bot, MeasureTheory.condLExp_bot, sSupHom.bot_apply, SSet.Subcomplex.instSubsingletonHomToSSetBot, Fintype.IsSimpleOrder.univ, isOpen_setOf_disjoint_nhds_nhds, LieModule.disjoint_lowerCentralSeries_maxTrivSubmodule_iff, Partition.pairwiseDisjoint, Set.disjoint_singleton, IsDedekindDomain.integer_empty, AffineSubspace.not_sSameSide_bot, eq_bot_of_isCompl_top, Subgroup.FG.finset_sup, Subalgebra.eq_bot_of_finrank_one, disjoint_nhds_nhds_iff_not_specializes, iSupIndep_pair, mem_codiscrete, continuous_bot, IntermediateField.LinearDisjoint.bot_left, FirstOrder.Language.Substructure.cg_bot, IntermediateField.isTotallyReal_bot, SeparatedNhds.disjoint_nhdsSet, disjoint_nhdsSet_principal, Disjoint.filter_principal, Subalgebra.lTensorBot_one_tmul, Projectivization.Subspace.span_empty, iSupIndep.supIndep', Subalgebra.mulMap_bot_left_eq, Finset.truncatedInf_union_of_notMem, iSupIndep.supIndep, BoundedLatticeHom.coe_comp_lattice_hom', AffineSubspace.bot_coe, IntermediateField.instFiniteSubtypeMemBot, AffineSubspace.parallel_bot_iff_eq_bot, Filter.disjoint_iff, essSup_const_bot, SeminormedAddGroup.disjoint_nhds_zero, Filter.not_nonneg_sub_iff, CompleteSublattice.bot_mem, isClosed_and_discrete_iff, r1Space_iff_inseparable_or_disjoint_nhds, CompleteLattice.isCompactElement_iff_exists_le_iSup_of_le_iSup, IntermediateField.finrank_eq_one_iff, AddSubmonoid.disjoint_def', Filter.isAtom_pure, IntermediateField.eq_bot_of_isAlgClosed_of_isAlgebraic, IntermediateField.insepDegree_bot', isCoatom_bot, Submonoid.FG.finset_sup, Filter.disjoint_atBot_atTop, AddSubgroup.disjoint_def, Set.Icc_bot_top, CategoryTheory.GrothendieckTopology.bot_covers, AffineSubspace.smul_bot, isDenseEmbedding_pure, TopologicalSpace.Opens.coe_eq_empty, NonUnitalAlgebra.toSubmodule_bot, Filter.disjoint_cofinite_right, BoundedLatticeHom.coe_comp_sup_hom, IsLindelof.disjoint_nhdsSet_left, Filter.disjoint_map, PrimeSpectrum.iInf_localization_eq_bot, IntermediateField.bot_eq_top_of_finrank_adjoin_eq_one, IntermediateField.botContinuousSMul, Subalgebra.unop_bot, isComplemented_bot, AffineSubspace.parallel_iff_direction_eq_and_eq_bot_iff_eq_bot, BoundedLatticeHom.coe_toSupBotHom, Filter.disjoint_cofinite_left, LieAlgebra.IsSemisimple.sSup_atoms_eq_top, isCompl_iff, Set.not_disjoint_iff_nonempty_inter, Algebra.bijective_algebraMap_iff, hnot_top, Subgroup.subgroupOf_eq_bot, IsCompact.disjoint_nhdsSet_left, SSet.instHasDimensionLTToSSetBotSubcomplex, CategoryTheory.MorphismProperty.bot_mem_precoverage, LieAlgebra.IsSimple.isAtom_top, IntermediateField.rank_adjoin_eq_one_iff, iSupIndep_def'', Set.disjoint_insert_left, sSup_diff_singleton_bot, IsLindelof.disjoint_nhdsSet_right, TopologicalSpace.Closeds.coe_bot, IntermediateField.adjoin_one, CategoryTheory.sheafBotEquivalence_inverse_map_val, OrdinalApprox.lfpApprox_ord_eq_lfp, TopologicalSpace.Opens.coe_finset_sup, Setoid.bot_def, CategoryTheory.Subfunctor.Subpresheaf.bot_obj, Subfield.bot_eq_of_zMod_algebra, ConvexCone.disjoint_hull_left_of_convex, LT.lt.eq_bot, Filter.not_disjoint_self_iff, Filter.disjoint_of_disjoint_of_mem, MeasurableSpace.measurableSet_bot_iff, Subfield.map_bot, Submodule.comm_trans_rTensorOne, CategoryTheory.sheafBotEquivalence_unitIso, IntermediateField.extendScalars_self, BoundedOrderHom.coe_comp_botHom, Finset.sup_eq_top_iff, hnot_bot, iSupIndep_def', Finset.inf_eq_bot_iff, CategoryTheory.sheafBotEquivalence_inverse_obj_val, Subfield.roots_X_pow_char_sub_X_bot, MeasureTheory.Measure.mutuallySingular_iff_disjoint, Submodule.lTensorOne'_tmul, Submodule.rTensorOne'_tmul_one, isAtomic_of_complementedLattice, Con.toSetoid_eq_bot, Subgroup.disjoint_def', MeasureTheory.condExp_bot, Submodule.rTensorOne'_tmul, separatedNhds_iff_disjoint, TopologicalSpace.Opens.mem_bot, disjoint_nhdsSet_nhdsSet, iSupIndep.injOn, Finset.truncatedInf_empty, MeasurableSpace.generateFrom_singleton_univ, Quantale.mul_bot, Filter.nonneg_sub_iff, IsLprojection.coe_bot, Set.setOf_bot, disjoint_nhds_atBot_iff, sSup_atoms_eq_top, Real.disjoint_residual_ae, IsCompl.isCoatom_iff_isAtom, Set.bot_eq_empty, CompleteLinearOrder.himp_bot, iSupIndep_ne_bot, RootPairing.invtRootSubmodule.eq_bot_iff, clusterPt_iff_not_disjoint, StarSubalgebra.coe_bot, UniformSpace.toTopologicalSpace_bot, CompHausLike.LocallyConstant.locallyConstantIsoContinuousMap_hom, IntermediateField.finrank_adjoin_eq_one_iff, IntermediateField.bot_eq_top_of_rank_adjoin_eq_one, sSup_eq_bot', Partition.bot_notMem', IntermediateField.finrank_bot, Subgroup.disjoint_def, isCoatom_iff_eq_bot, IsIntegrallyClosed.integralClosure_eq_bot, IsIntegrallyClosed.integralClosure_eq_bot_iff, IntermediateField.sepDegree_bot, AddQuantale.add_bot, Submodule.rTensorOne_tmul, IntermediateField.finInsepDegree_bot', Filter.HasBasis.disjoint_iff, IntermediateField.restrictScalars_bot_eq_self, IntermediateField.fg_bot, Filter.limsInf_top, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_bot_iff, TopologicalSpace.Closeds.isAtom_iff, GroupTopology.toTopologicalSpace_bot, Order.krullDim_le_one_iff_of_boundedOrder, isAtomic_of_isCoatomic_of_complementedLattice_of_isModular, Algebra.adjoin_singleton_one, CompleteSublattice.coe_bot, IntermediateField.adjoin_empty, Field.Emb.Cardinal.eq_bot_of_not_nonempty, Set.not_disjoint_iff, IntermediateField.rank_bot, CommMonoid.primaryComponent.disjoint, Set.disjoint_iff_inter_eq_empty, iSup_eq_dif, separableClosure_inf_perfectClosure, t2Space_iff_disjoint_nhds, Subalgebra.rTensorBot_tmul_one, ConvexCone.disjoint_coe, CompletelyNormalSpace.completely_normal, MeasureTheory.Measure.mutuallySingular_iff_disjoint_ae, Filter.disjoint_principal_principal, Finset.sup_inf, BoundedLatticeHom.map_bot', Subfield.bot_eq_of_charZero, RegularSpace.regular, IsIntegrallyClosedIn.integralClosure_eq_bot_iff, IsPGroup.disjoint_of_ne, Finset.truncatedInf_singleton, sSupIndep.disjoint_sSup, IsCompl.inf_eq_bot, Set.disjoint_insert_right, Set.pairwiseDisjoint_nhds, Prop.disjoint_iff, Filter.disjoint_comap_iff_map, IntermediateField.bot_eq_top_iff_finrank_eq_one, IntermediateField.adjoin_eq_bot_iff, MeasureTheory.SimpleFunc.simpleFunc_bot', Submodule.rTensorOne_tmul_one, Finset.truncatedInf_sups_of_notMem, CategoryTheory.GrothendieckTopology.trivial_eq_bot, FirstOrder.Language.Substructure.closure_empty, Filter.limsup_bot, Filter.disjoint_pure_pure, IntermediateField.lift_sepDegree_bot', AffineSubspace.coe_eq_bot_iff, Finset.Nonempty.inf_eq_bot_iff, iSupβ‚‚_eq_bot, essSup_measure_zero, Algebra.adjoin_singleton_natCast, IntermediateField.LinearDisjoint.inf_eq_bot, FirstOrder.Language.Substructure.map_bot, Subalgebra.bot_eq_top_iff_finrank_eq_one, Subalgebra.mulMap_bot_right_eq, AddSubgroup.FG.finset_sup, CategoryTheory.Subfunctor.bot_obj, R1Space.specializes_or_disjoint_nhds, iSupIndep.sup_indep_univ, Finset.sup_eq_iSup, Set.disjoint_univ, Subalgebra.lTensorBot_symm_apply, bot_codisjoint, disjoint_nhds_nhds_iff_not_inseparable, Con.toSetoid_bot, MeasureTheory.sigmaFinite_bot_iff, iSup_neg, disjoint_nhds_nhdsSet, IntermediateField.lift_bot, IsSimpleOrder.equivBool_symm_apply, LieSubmodule.instIsAtomicOfIsArtinian, IsGalois.fixedField_top, isSimpleOrder_iff, MulAction.BlockMem.coe_bot, Filter.not_one_le_div_iff, MeasureTheory.hittingAfter_eq_sInf, MeasureTheory.condLExp_bot_ae_eq, IsPGroup.le_or_disjoint_of_coprime, CategoryTheory.GrothendieckTopology.bot_covering, Submodule.mulMap_one_left_eq, AffineSubspace.isEmpty_bot, IntermediateField.adjoin_simple_eq_bot_iff, IntermediateField.relfinrank_bot_left, t1Space_iff_disjoint_pure_nhds, RingCon.matrix_bot, bot_lt_top, TopologicalSpace.Closeds.coe_finset_sup, TopologicalSpace.Opens.mk_empty, iSup_ne_bot_subtype, IntermediateField.adjoin_intCast, mem_codiscreteWithin, inf_sSup_eq_iSup_inf_sup_finset, Algebra.surjective_algebraMap_iff, IntermediateField.sepDegree_bot', CategoryTheory.Presheaf.isSheaf_bot, IntermediateField.LinearDisjoint.bot_right, Filter.limsSup_bot, AffineSubspace.pointwise_vadd_bot, iSup_emptyset, discreteTopology_bot, iSupIndep_def, RingCon.coe_bot, disjoint_pure_nhds, top_disjoint, IntermediateField.rank_eq_one_iff, BoxIntegral.norm_volume_sub_integral_face_upper_sub_lower_smul_le, Set.disjoint_iff_forall_ne, Subalgebra.fg_bot, IntermediateField.eq_bot_of_isPurelyInseparable_of_isSeparable, Filter.disjoint_atTop_principal_Iic, AffineSubspace.not_sOppSide_bot, isSimpleOrder_iff_isCoatom_bot, disjoint_nhds_atTop, isAtomic_iff_isCoatomic, isDenseInducing_pure, eq_bot_of_top_isCompl, IntermediateField.isScalarTower_over_bot, ProbabilityTheory.condVar_bot', IntermediateField.bot_toSubfield, Metric.disjoint_cobounded_nhds, sSupIndep_pair, AffineSubspace.span_empty, NonUnitalStarAlgebra.map_bot, AffineSubspace.map_bot, Subalgebra.lTensorBot_tmul, NonUnitalAlgebra.adjoin_empty, Filter.HasBasis.disjoint_iff_left, Subgroup.isComplement'_iff_card_mul_and_disjoint, CategoryTheory.Sieve.functorPushforward_bot, disjoint_principal_nhdsSet, ProbabilityTheory.condIndep_bot_right, regularSpace_generateFrom, Order.Frame.himp_bot, mem_bot_iff_intCast, Filter.one_le_div_iff, IntermediateField.adjoin_natCast, BoundedLatticeHomClass.toSupBotHomClass, TopologicalSpace.Opens.coe_bot, IsCompactlyGenerated.BooleanGenerators.isAtomistic_of_sSup_eq_top, Complementeds.coe_bot, Set.univ_disjoint, TopologicalSpace.Closeds.isClopen_singleton_bot, IsCyclotomicExtension.singleton_one, MeasureTheory.hittingBtwn_eq_sInf, IntermediateField.isPurelyInseparable_bot, AddQuantale.bot_add, Filter.disjoint_atTop_atBot, SeminormedGroup.disjoint_nhds_one, AffineSubspace.map_eq_bot_iff, Filter.disjoint_prod, regularSpace_iff, Filter.disjoint_atBot_principal_Ioi, AddAction.BlockMem.coe_bot, Subalgebra.rTensorBot_symm_apply, RootPairing.coe_bot, ProbabilityTheory.indep_bot_right, ProbabilityTheory.condVar_bot_ae_eq, AffineSubspace.direction_bot, TopologicalSpace.Closeds.isAtom_coe, instIsAtomicFilter, AddSubgroup.disjoint_iff_add_eq_zero, MaximalSpectrum.iInf_localization_eq_bot, Set.disjoint_empty, Algebra.IsCentral.center_eq_bot, IsGaloisGroup.fixingSubgroup_bot, Finset.sup_eq_sSup_image, isAtomistic_of_complementedLattice, ProbabilityTheory.indep_bot_left, Partition.disjoint, Submodule.lTensorOne_symm_apply, BoundedOrderHomClass.toBotHomClass, IntermediateField.finInsepDegree_bot, MvPolynomial.supported_empty, LinearOrder.bot_topologicalSpace_eq_generateFrom, specializes_iff_not_disjoint, MeasureTheory.SimpleFunc.simpleFunc_bot, ConvexCone.disjoint_hull_right_of_convex, affineSpan_eq_bot, ProbabilityTheory.condVar_bot, fixedPoints.lfp_eq_sSup_iterate, Filter.limsup_const_bot, JacobsonNoether.exists_separable_and_not_isCentral', MeasureTheory.Measure.MutuallySingular.disjoint_ae, disjoint_nhds_pure, Submodule.lTensorOne'_one_tmul, IntermediateField.finrank_bot', sdiff_top, Quantale.bot_mul, isCompl_iff', CategoryTheory.Pretopology.toGrothendieck_bot, Partition.bot_lt_of_mem, Setoid.mk_eq_bot, Subalgebra.rank_eq_one_iff, DiscreteTopology.eq_bot, IntermediateField.botEquiv_def, Valuation.Integers.integralClosure, IntermediateField.finSepDegree_bot', disjoint_lift'_closure_nhds, stronglyMeasurable_bot_iff, IntermediateField.eq_bot_of_isSepClosed_of_isSeparable, IsSimpleOrder.lt_top_iff_eq_bot, WellFoundedLT.finite_ne_bot_of_iSupIndep, iSup_eq_if, FirstOrder.Language.Substructure.elementarySkolem₁Reduct.instSmall, TopologicalSpace.Opens.coe_disjoint, Subalgebra.eq_bot_of_rank_le_one, IntermediateField.bot_eq_top_of_finrank_adjoin_le_one, AddSubmonoid.disjoint_def, Submodule.lTensorOne_tmul, AddCon.toSetoid_eq_bot, IntermediateField.relrank_bot_right, AlgebraicGeometry.Scheme.IdealSheafData.support_top, Subalgebra.comm_trans_lTensorBot, InfiniteGalois.fixedField_bot, CompletelyDistribLattice.himp_bot, IsCompl.inf_right_eq_bot_iff, NonUnitalAlgebra.map_bot, IsSepClosed.separableClosure_eq_bot_iff, Subfield.closure_empty, Directed.disjoint_iSup_left, Subalgebra.bot_eq_top_of_finrank_eq_one, isAtom_iff_eq_top, isCompl_bot_top, Filter.disjoint_cocompact_right, AddSubgroup.disjoint_def', IsSimpleOrder.eq_bot_of_lt, complementedLattice_iff_isAtomistic, eq_bot_of_singletons_open, Subalgebra.isAlgebraic_bot_iff, Filter.disjoint_pure_atBot, isAtom_top, TwoSidedIdeal.bot_ringCon, r1Space_iff_specializes_or_disjoint_nhds, perfectClosure.eq_bot_of_isSeparable, subsingleton_iff_bot_eq_top, ProbabilityTheory.Kernel.indep_bot_left, MeasureTheory.sigmaFinite_trim_bot_iff, OrdinalApprox.lfp_mem_range_lfpApprox, Filter.compl_diagonal_mem_prod, IsCompactlyGenerated.BooleanGenerators.eq_atoms_of_sSup_eq_top, Partition.coe_removeBot, CompleteLattice.isCompactElement_iff_exists_le_sSup_of_le_sSup, CompleteSublattice.disjoint_iff, BoundedLatticeHomClass.map_bot, subsingleton_iff_top_eq_bot, FirstOrder.Language.Substructure.instIsEmptySubtypeMemBotOfConstants, IntermediateField.insepDegree_bot, IsAlgClosed.algebraicClosure_eq_bot_iff, IntermediateField.rank_bot', iSupIndep_iff_supIndep, CompleteLattice.isAtomistic_iff, Filter.blimsup_false, MeasureTheory.condExp_bot', IsGalois.tfae, Subfield.card_bot, iSupIndep_iff_supIndep_univ, Finset.sup_univ_eq_iSup, IntermediateField.LinearDisjoint.eq_bot_of_self, ProbabilityTheory.Kernel.indep_bot_right, separableClosure.separableClosure_eq_bot, IsCompl.isAtom_iff_isCoatom, Submonoid.disjoint_def', NonUnitalAlgebra.mem_bot, pairwise_disjoint_nhds, Submodule.lTensorOne_one_tmul, iSup_of_empty, disjoint_nhds_atTop_iff, CategoryTheory.sheafBotEquivalence_counitIso, MeasureTheory.Measure.MutuallySingular.disjoint, IsCompact.disjoint_nhdsSet_right, AddSubgroup.addSubgroupOf_eq_bot, LieAlgebra.InvariantForm.atomistic, AffineSubspace.not_wOppSide_bot, Filter.HasBasis.disjoint_cobounded_iff, Representation.invtSubmodule.coe_bot, Filter.disjoint_atBot_principal_Ici, isCompl_top_bot, Metric.disjoint_nhdsSet_cobounded, Subfield.extendScalars_self, iSup_eq_bot, disjoint_nhdsSet_nhds, IntermediateField.relrank_bot_left, CompleteBooleanAlgebra.inf_compl_le_bot, Subalgebra.LinearDisjoint.eq_bot_of_commute_of_self, AddSubmonoid.FG.finset_sup, LieAlgebra.IsSemisimple.sSupIndep_isAtom, Subalgebra.finrank_bot, Submonoid.disjoint_def, Subgroup.disjoint_iff_mul_eq_one, Module.End.invtSubmodule.mk_eq_bot_iff, ZMod.fieldRange_castHom_eq_bot, IsSimpleOrder.bot_lt_iff_eq_top, AffineSubspace.eq_bot_or_nonempty, Filter.disjoint_pure_atTop, MeasureTheory.hitting_eq_sInf, IntermediateField.mem_bot, IsCompl.disjoint, Algebra.IsCentral.out, IsSimpleOrder.eq_bot_or_eq_top, SeminormedAddGroup.disjoint_nhds, IsCompl.le_left_iff, IsCompact.disjoint_nhdsSet_nhds, IsModularLattice.complementedLattice_Iic, Finset.sup_id_eq_sSup, IsSimpleOrder.instIsAtomic, IntermediateField.fixingSubgroup_bot, Set.disjoint_range_iff, Finset.exists_sup_eq_iSup, Subalgebra.bot_eq_top_iff_rank_eq_one, isGalois_bot, Subalgebra.rTensorBot_tmul, iSup_extend_bot, sSupHomClass.toSupBotHomClass, iSup_bot, Set.empty_disjoint, isGalois_iff_isGalois_bot, DirectedOn.disjoint_sSup_right, eq_sSup_atoms, LieAlgebra.IsSimple.isAtom_iff_eq_top, AffineSubspace.bot_parallel_iff_eq_bot, Set.disjoint_union_left, FirstOrder.Language.Substructure.fg_bot, Specializes.not_disjoint, IntermediateField.finrank_adjoin_simple_eq_one_iff, CompleteLattice.Ο‰ScottContinuous.bot, Subalgebra.LinearDisjoint.eq_bot_of_self, Module.End.invtSubmodule.disjoint_iff, separableClosure.eq_bot_iff, Subalgebra.LinearDisjoint.bot_left, Subalgebra.rank_bot, Coheyting.boundary_bot, Subalgebra.LinearDisjoint.bot_right, IntermediateField.rank_adjoin_simple_eq_one_iff, Concept.extent_bot, IsCompl.disjoint_right_iff, disjoint_nhds_atBot, MonoidHom.noncommCoprod_injective, notMem_iff_exists_ne_and_isConjRoot, LieIdeal.comap_incl_eq_bot, Algebra.adjoin_empty, Subalgebra.fg_bot_toSubmodule, Algebra.botEquiv_symm_apply, MeasurableSpace.generateFrom_singleton_empty, NonUnitalStarAlgebra.toNonUnitalSubalgebra_bot, BoundedOrderHom.map_bot', AffineSubspace.notMem_bot, IsCompl.disjoint_left_iff, Complementeds.disjoint_coe, DistribLattice.mem_ideal_sup_principal, MeasureTheory.condExp_bot_ae_eq, Subalgebra.bot_eq_top_of_rank_eq_one, RingCon.toCon_bot, IsGalois.mem_bot_iff_fixed, Subalgebra.finrank_eq_one_iff, IntermediateField.map_bot, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_bot, Subgroup.IsComplement'.disjoint, Set.disjoint_iff, Ultrafilter.isAtom, IsSimpleOrder.instIsAtomistic, disjoint_nhds_nhds, separableClosure.eq_bot_of_isPurelyInseparable, Subalgebra.eq_bot_of_isPurelyInseparable_of_isSeparable, IsCompl.le_right_iff, Set.Nonempty.not_disjoint, Subalgebra.finite_bot, IntermediateField.finSepDegree_bot, Filter.disjoint_principal_right, AddGroupTopology.toTopologicalSpace_bot, IsGaloisGroup.fixedPoints_eq_bot, LieModule.disjoint_genWeightSpace, Finset.truncatedInf_of_notMem, SSet.skeleton_zero, Ultrafilter.disjoint_iff_not_le
bridge: bot_eq_false
toOrderTop πŸ“–CompOp
858 math, 1 bridgemath: AlgebraicGeometry.Scheme.toSpecΞ“_apply, AlgebraicGeometry.Scheme.Opens.ΞΉ_image_basicOpen, AlgebraicGeometry.Ξ“_map_morphismRestrict, AlgebraicGeometry.Scheme.Hom.smoothLocus_eq_top_iff, IsCyclotomicExtension.adjoin_primitive_root_eq_top, NonUnitalSubalgebra.center_eq_top, AlgebraicGeometry.Scheme.Ξ“SpecIso_inv_naturality_assoc, AlgebraicGeometry.Scheme.Hom.toPartialMap_hom, AlgebraicGeometry.Scheme.map_PrimeSpectrum_basicOpen_of_affine, IntermediateField.finInsepDegree_top, OrderIso.map_radical, SSet.Subcomplex.preimage_eq_top_iff, measurable_from_top, AlgebraicGeometry.IsAffineOpen.isoSpec_inv_appTop, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo, IntermediateField.adjoin_eq_top_iff_of_isAlgebraic, Heyting.isRegular_top, IsCompl.sup_eq_top, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app, AlgebraicGeometry.Scheme.IsQuasiAffine.toIsImmersion, AlgebraicGeometry.StructureSheaf.globalSectionsIso_inv, TopologicalSpace.Opens.mem_top, AlgebraicGeometry.iSup_affineOpens_eq_top, AlgebraicGeometry.isAffineOpen_top, Finset.truncatedSup_infs, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv, MeasureTheory.Measure.sub_top, BoundedOrderHomClass.map_top, eq_sInf_coatoms, Subalgebra.pi_top, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_presheaf_map_top, AlgebraicGeometry.LocallyRingedSpace.notMem_prime_iff_unit_in_stalk, sSup_univ, AlgebraicGeometry.Scheme.restrictFunctorΞ“_inv_app, AlgebraicGeometry.instIsDomainCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopOfIsIntegral, MeasureTheory.OuterMeasure.mkMetric_top, codisjoint_bot, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous_ne_zero, AffineBasis.tot, Algebra.mem_top, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, Filter.liminf_const_top, Finset.Colex.toColex_univ, AlgebraicGeometry.Scheme.fromSpecStalk_toSpecΞ“_assoc, AlgebraicGeometry.AffineSpace.SpecIso_hom_appTop, IsOpen.exists_subset_affineIndependent_span_eq_top, SSet.iSup_subcomplexOfSimplex_prod_eq_top, isSimpleOrder_iff_isAtom_top, OrdinalApprox.gfp_mem_range_gfpApprox, AlgebraicGeometry.Scheme.zeroLocus_eq_univ_iff_subset_nilradical, AlgebraicGeometry.Scheme.Opens.topIso_inv, Opens.pretopology_toGrothendieck, CategoryTheory.Sieve.mem_iff_pullback_eq_top, iInf_of_empty, inseparable_top, Prop.codisjoint_iff, TensorAlgebra.adjoin_range_ΞΉ, NonUnitalStarAlgebra.mem_top, AlgHom.equalizer_eq_top, Subgroup.isCoatom_map, iInf_false, AlgebraicGeometry.Scheme.Hom.id_appTop, CategoryTheory.Presheaf.imageSieve_app, iInf_eq_top, IsGaloisGroup.fixingSubgroup_top, AddSubgroup.map_eq_range_iff, AlgebraicGeometry.Scheme.ideal_ker_le_ker_Ξ“SpecIso_inv_comp, Algebra.toSubsemiring_eq_top, MeasureTheory.OuterMeasure.trim_top, RootPairing.invtRootSubmodule.eq_top_iff, IsLocalRing.closedPoint_mem_iff, AlgebraicGeometry.Scheme.isoSpec_inv_toSpecΞ“, QuotientAddGroup.leftRel_eq_top, TopologicalSpace.Opens.isCoatom_iff, Finset.Nonempty.sup_eq_top_iff, RingCon.matrix_top, SSet.Subcomplex.range_eq_top, AlgHom.fieldRange_eq_map, Field.exists_primitive_element, isGalois_iff_isGalois_top, AlgebraicGeometry.isIso_Ξ“Spec_adjunction_unit_app_basicOpen, AlgebraicGeometry.isNoetherian_iff_of_finite_affine_openCover, AlgebraicGeometry.Scheme.ΞΉ_toIso_inv, LTSeries.exists_relSeries_covBy_and_head_eq_bot_and_last_eq_bot, CategoryTheory.Subfunctor.range_toRange, UnitAddTorus.mFourierSubalgebra_closure_eq_top, Frm.Iso.mk_hom, Algebra.toSubring_eq_top, AddCon.toSetoid_top, NumberField.adjoin_eq_top_of_infinitePlace_lt, Polynomial.IsSplittingField.splits_iff, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_apply, SSet.Subcomplex.topIso_inv_app_coe, polynomialFunctions.starClosure_topologicalClosure, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_symm_apply, CategoryTheory.GrothendieckTopology.trivial_covering, AffineEquiv.span_eq_top_iff, AlgebraicGeometry.Scheme.SpecΞ“Identity_hom_app, AffineSubspace.direction_eq_top_iff_of_nonempty, induced_const, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top, integralClosure_eq_top_iff, interior_convexHull_nonempty_iff_affineSpan_eq_top, CompleteSublattice.top_mem, AlgebraicGeometry.Scheme.isoSpec_inv_preimage_zeroLocus, TopologicalSpace.eq_top_iff_forall_inseparable, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app_assoc, AlgebraicGeometry.PresheafedSpace.Ξ“_obj_op, IntermediateField.adjoin_univ, Finset.inf_id_eq_sInf, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΞ“_app, TopCat.GlueData.MkCore.V_id, AffineSubspace.linear_topEquiv, UniformSpace.toTopologicalSpace_top, CategoryTheory.Subfunctor.Subpresheaf.preimage_eq_top_iff, CategoryTheory.Sieve.top_apply, MulAction.BlockMem.coe_top, Algebra.EssFiniteType.adjoin_mem_finset, IsCompl.left_le_iff, AlgebraicGeometry.Scheme.Hom.preimage_top, Polynomial.IsSplittingField.adjoin_rootSet, IsModularLattice.complementedLattice_Ici, AlgebraicGeometry.Scheme.isoSpec_hom, AlgebraicGeometry.Scheme.ΞΉ_toIso_inv_assoc, AlgebraicGeometry.Proj.basicOpenToSpec_app_top, NonUnitalSubalgebra.prod_top, AlgebraicGeometry.Scheme.Hom.image_top_eq_opensRange, MeasurableSpace.map_const, bot_covBy_top, NonUnitalStarAlgebra.coe_top, AlgebraicGeometry.Scheme.toSpecΞ“_naturality_assoc, Sublocale.top_mem, AlgebraicGeometry.SurjectiveOnStalks.iff_of_isAffine, AlgebraicGeometry.SpecMap_Ξ“SpecIso_hom, Subalgebra.center_eq_top, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex, SSet.iSup_skeleton, PrimeSpectrum.iSup_basicOpen_eq_top_iff, IsNormalClosure.adjoin_rootSet, AffineBasis.tot', TopologicalSpace.Opens.isOpenEmbedding_obj_top, AlgebraicGeometry.LocallyRingedSpace.Ξ“_obj_op, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_appTop_coord, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over_assoc, SSet.Subcomplex.eq_top_iff_of_hasDimensionLT, AlgebraicGeometry.Scheme.isoSpec_hom_naturality, iInfβ‚‚_eq_top, AlgebraicGeometry.Scheme.toSpecΞ“_isoSpec_inv_assoc, disjoint_top, alternatingGroup.isCoatom_stabilizer_singleton, essInf_measure_zero, Polynomial.SplittingFieldAux.adjoin_rootSet, RingCon.subsingleton_quotient, CategoryTheory.Sieve.generate_top, SSet.Subcomplex.topIso_inv_ΞΉ, AlgebraicGeometry.Scheme.toSpecΞ“_naturality, AlgebraicGeometry.Scheme.Hom.quasiFiniteLocus_eq_top, IntermediateField.fixingSubgroup_top, AffineSubspace.coe_eq_univ_iff, CategoryTheory.Sieve.equalizer_self, TopologicalSpace.Opens.mk_univ, AlgebraicGeometry.LocallyRingedSpace.Ξ“_Spec_left_triangle, LatticeHom.withTopWithBot'_toFun, AlgebraicGeometry.RingedSpace.mem_top_basicOpen, PMF.toOuterMeasure_caratheodory, IntermediateField.relfinrank_top_right, IndiscreteTopology.eq_top, Finset.Icc_bot_top, Finset.inf_sup, AlgebraicGeometry.Scheme.Hom.toPartialMap_domain, CompleteLinearOrder.top_sdiff, Submodule.toConvexCone_top, AlgebraicGeometry.IsAffineOpen.isoSpec_inv, AlgebraicGeometry.Scheme.Ξ“_obj, CategoryTheory.Presieve.isSheafFor_top_sieve, AlgebraicGeometry.isLocallyNoetherian_iff_of_affine_openCover, SSet.hasDimensionLT_subcomplex_top_iff, IntermediateField.restrictScalars_top, Fintype.IsSimpleOrder.univ, EuclideanGeometry.Sphere.orthRadius_center, Representation.invtSubmodule.coe_top, Finset.top_eq_univ, TopologicalSpace.isOpen_top_iff, AlgebraicGeometry.IsLocallyArtinian.isArtinianRing_of_isAffine, AlgebraicGeometry.StructureSheaf.toPushforwardStalkAlgHom_apply, AlgebraicGeometry.Scheme.preimage_basicOpen_top, MvPolynomial.adjoin_range_X, AlgebraicGeometry.Scheme.Ξ“SpecIso_inv, NonUnitalAlgebra.range_id, IntermediateField.mem_top, AlgebraicGeometry.Scheme.isoSpec_hom_naturality_assoc, AlgebraicGeometry.Scheme.isoSpec_inv_image_zeroLocus, Field.primitive_element_iff_algHom_eq_of_eval', CategoryTheory.GrothendieckTopology.top_mem, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app', adjoin_eq_top_of_conductor_eq_top, AlgebraicGeometry.Scheme.Opens.ΞΉ_image_basicOpen_topIso_inv, IntermediateField.relrank_top_right, AlgebraicGeometry.SpecMap_Ξ“SpecIso_inv_toSpecΞ“, AffineBasis.affineSpan_eq_top_of_toMatrix_left_inv, AlgebraicGeometry.Scheme.toSpecΞ“_preimage_zeroLocus, Algebra.coe_top, TopologicalSpace.Opens.inclusion'_top_functor, MeasureTheory.Measure.mkMetric_top, Set.instNonemptyTop, SSet.Subcomplex.eq_top_iff_contains_nonDegenerate, AlgebraicGeometry.Scheme.fromSpecStalk_appTop, Subalgebra.unop_top, AlgebraicGeometry.PresheafedSpace.Ξ“_map_op, AlgebraicGeometry.Scheme.id_appTop, sSup_compact_eq_top, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_appTop_assoc, BoundedLatticeHom.coe_comp_lattice_hom', Convex.interior_nonempty_iff_affineSpan_eq_top, Polynomial.adjoin_rootSet_eq_range, CategoryTheory.Presheaf.equalizerSieve_self_eq_top, AlgebraicGeometry.Scheme.fromSpecStalk_toSpecΞ“, AlgebraicGeometry.Scheme.ker_toSpecΞ“, TopCat.Presheaf.map_germ_eq_Ξ“germ, Algebra.top_toSubmodule, SSet.Subcomplex.preimage_range, AlgebraicGeometry.Scheme.ker_of_isAffine, Subalgebra.fg_of_submodule_fg, AlgebraicGeometry.IsAffineOpen.algebraMap_Spec_obj, AlgebraicGeometry.isBasis_basicOpen, AlgebraicGeometry.Scheme.Ξ“evaluation_naturality_apply, CliffordAlgebra.adjoin_range_ΞΉ, AlgebraicGeometry.Flat.flat_and_surjective_iff_faithfullyFlat_of_isAffine, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_presheaf_map_top_assoc, AlgebraicGeometry.LocallyRingedSpace.coe_toΞ“SpecSheafedSpace_hom_base_hom_apply_asIdeal, Finset.codisjoint_left, Polynomial.Splits.adjoin_rootSet_eq_range, Setoid.top_def, AlgebraicGeometry.isIntegral_appTop_of_universallyClosed, IntermediateField.lift_top, AlgebraicGeometry.Ξ“Spec.adjunction_counit_app, AlgebraicGeometry.tilde.isoTop_hom, CategoryTheory.Subfunctor.range_eq_top, borel_eq_top_of_discrete, isCoatom_bot, MulAction.isCoatom_stabilizer_iff_preprimitive, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_appTop, CategoryTheory.Subfunctor.Subpresheaf.image_top, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_stalkMap_toSpec_assoc, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous, AlgebraicGeometry.Ξ“_restrict_isLocalization, IntermediateField.restrictScalars_eq_top_iff, Set.Icc_bot_top, Complementeds.coe_top, CategoryTheory.top_apply, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_stalkMap_toSpec, Opens.pretopology_ofGrothendieck, AlgebraicGeometry.Ξ“SpecIso_obj_hom, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_sieve₁, AlgebraicGeometry.Spec.germ_stalkMapIso_hom_assoc, AlgebraicGeometry.Scheme.Hom.preimage_basicOpen_top, IntermediateField.bot_eq_top_of_finrank_adjoin_eq_one, Setoid.mk_eq_top, MeasureTheory.OuterMeasure.comap_top, CategoryTheory.Sieve.overEquiv_top, ProbabilityTheory.iIndep_comap_mem_iff, Field.exists_primitive_element_of_finite_bot, CategoryTheory.GrothendieckTopology.close_eq_top_iff_mem, TopologicalSpace.Opens.functor_obj_map_obj, CategoryTheory.Sieve.arrows_eq_top_iff, Complementeds.codisjoint_coe, AlgebraicGeometry.exists_appTop_Ο€_eq_of_isAffine_of_isLimit, CategoryTheory.Sieve.arrows_top, Frm.Iso.mk_inv, QuotientAddGroup.rightRel_eq_top, AlgebraicGeometry.Scheme.OpenCover.iSup_opensRange, isCompl_iff, AffineSubspace.mem_top, Algebra.bijective_algebraMap_iff, Subalgebra.topEquiv_apply, CategoryTheory.topologyOfClosureOperator_sieves, Field.exists_primitive_element_of_finite_top, IntermediateField.adjoin_simple_eq_top_iff_of_isAlgebraic, continuous_top, MulAction.IsPreprimitive.isCoatom_stabilizer_of_isPreprimitive, AlgebraicGeometry.Scheme.Ξ“evaluation_naturality_assoc, essInf_const_top, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_ofIdealTop, AlgebraicGeometry.Ξ“Spec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, AddGroupTopology.toTopologicalSpace_top, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_top, IntermediateField.rank_top, CompleteDistribLattice.top_sdiff, CategoryTheory.Sieve.generate_of_singleton_isSplitEpi, AlgebraicGeometry.AffineSpace.SpecIso_inv_appTop_coord, CategoryTheory.Sieve.functorPullback_top, AlgebraicGeometry.germ_stalkClosedPointIso_hom_assoc, NonUnitalAlgebra.top_toNonUnitalSubsemiring, Quotient.subsingleton_iff, PowerBasis.adjoin_gen_eq_top, BoundedLatticeHom.map_top', StarSubalgebra.eq_top_iff, Finset.Colex.ofColex_top, IntermediateField.adjoin_root_eq_top, AffineSubspace.smul_top, ConvexCone.toPointedCone_top, iInf_ne_top_subtype, CategoryTheory.GrothendieckTopology.discrete_eq_top, TopCat.Presheaf.map_germ_eq_Ξ“germ_assoc, NonUnitalStarAlgebra.top_toNonUnitalSubalgebra, Set.addCentralizer_empty, MeasureTheory.OuterMeasure.zero_caratheodory, ConvexCone.mem_top, IsLprojection.coe_top, MeasureTheory.OuterMeasure.top_caratheodory, TopologicalSpace.Closeds.coe_finset_inf, AlgebraicGeometry.StructureSheaf.globalSectionsIso_hom, IntermediateField.finrank_top, Finset.sup_eq_top_iff, CompleteSublattice.codisjoint_iff, NonUnitalStarAlgebra.range_eq_top, separableClosure.eq_top_iff, Finset.inf_eq_bot_iff, ProbabilityTheory.iIndepSet.iIndep_comap_mem, Algebra.top_toSubring, AlgebraicGeometry.Ξ“Spec.left_triangle, CategoryTheory.Subfunctor.eq_top_iff_isIso, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΞ“_app_assoc, AlgebraicGeometry.AffineSpace.comp_homOfVector, IntermediateField.top_toSubalgebra, IntermediateField.relrank_top_left, AlgebraicGeometry.Scheme.instIsOpenImmersionToSpecΞ“OfIsQuasiAffine, AlgebraicGeometry.Scheme.homOfLE_appTop, IsGaloisGroup.fixedPoints_bot, AlgebraicGeometry.Scheme.isoSpec_inv_naturality_assoc, AlgebraicGeometry.IsAffineOpen.fromSpec_app_self, nhds_top, AlgebraicGeometry.PresheafedSpace.restrictTopIso_hom, exists_root_adjoin_eq_top_of_isCyclic, AlgebraicGeometry.AffineSpace.hom_ext_iff, AlgebraicGeometry.Ξ“Spec.unop_locallyRingedSpaceAdjunction_counit_app', AlgebraicGeometry.Scheme.isoSpec_Spec_hom, AddMonoid.Coprod.codisjoint_mrange_inl_mrange_inr, sSup_atoms_eq_top, IntermediateField.finrank_eq_one_iff_eq_top, SSet.Subcomplex.iSup_ofSimplex_nonDegenerate_eq_top, IsCompl.isCoatom_iff_isAtom, TopologicalSpace.Opens.coe_finset_inf, AlgebraicGeometry.tilde.isIso_toOpen_top, Subfield.extendScalars_top, AlgebraicGeometry.HasRingHomProperty.appTop, AffineSubspace.mk'_top, Algebra.zariskisMainProperty_iff_exists_saturation_eq_top, NumberField.is_primitive_element_of_infinitePlace_lt, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top, MonoidAlgebra.exists_finset_adjoin_eq_top, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot, IntermediateField.bot_eq_top_of_rank_adjoin_eq_one, SeparationQuotient.inseparableSetoid_eq_top_iff, AlgebraicGeometry.Scheme.isPullback_toSpecΞ“_toSpecΞ“, AlgebraicGeometry.Scheme.Ξ“SpecIso_naturality, AlgebraicGeometry.Scheme.restrictFunctorΞ“_hom_app, AddSubgroup.codisjoint_addSubgroupOf_sup, PowerBasis.adjoin_eq_top_of_gen_mem_adjoin, isCoatom_iff_eq_bot, NonUnitalAlgebra.eq_top_iff, AlgebraicGeometry.SheafedSpace.Ξ“_map, Polynomial.IsSplittingField.adjoin_rootSet', AlgebraicGeometry.germ_stalkClosedPointIso_hom, IsCompl.right_le_iff, ProbabilityTheory.Kernel.iIndep_comap_mem_iff, AlgebraicGeometry.Scheme.toSpecΞ“_isoSpec_inv, AlgebraicGeometry.IsFinite.instHasAffinePropertyAndIsAffineFiniteCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopHomAppTop, AlgebraicGeometry.IsAffineOpen.instIsAffineToSchemeBasicOpen, OrdinalApprox.gfpApprox_ord_eq_gfp, CategoryTheory.Coverage.eq_top_pullback, BoundedOrderHom.coe_comp_topHom, AlgebraicGeometry.Scheme.toIso_inv_ΞΉ_assoc, AlgebraicGeometry.SheafedSpace.restrictTopIso_inv, AlgebraicGeometry.Scheme.toSpecΞ“_appTop, Order.Coframe.top_sdiff, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top', Order.krullDim_le_one_iff_of_boundedOrder, Finset.codisjoint_right, AlgHom.range_eq_top, CategoryTheory.Subfunctor.Subpresheaf.epi_iff_range_eq_top, NonUnitalAlgebra.mem_top, Set.top_eq_univ, NonUnitalStarAlgebra.toNonUnitalSubalgebra_eq_top, SSet.Subcomplex.image_top, AffineSubspace.affineSpan_eq_top_iff_vectorSpan_eq_top_of_nonempty, AffineSubspace.topEquiv_symm_apply_coe, FrameHom.coe_toInfTopHom, AlgebraicGeometry.StructureSheaf.algebraMap_obj_top_bijective, Module.End.invtSubmodule.mk_eq_top_iff, TopologicalSpace.Opens.inclusion'_map_eq_top, Subalgebra.centralizer_eq_top_iff_subset, AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_self, MeasureTheory.Measure.add_top, Heyting.Regular.coe_top, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_naturality_apply, Algebra.top_toSubsemiring, AlgebraicGeometry.Spec_zeroLocus_eq_zeroLocus, AlgebraicGeometry.Scheme.Opens.ΞΉ_appTop, AddMonoid.Coprod.codisjoint_range_inl_range_inr, Finset.sup_inf, AffineMap.map_top_of_surjective, AlgebraicGeometry.Scheme.map_basicOpen, CategoryTheory.Subfunctor.Subpresheaf.top_obj, NonUnitalAlgebra.adjoin_univ, AlgebraicGeometry.isRetrocompact_basicOpen, AlgebraicGeometry.Scheme.isoSpec_inv_naturality, IntermediateField.bot_eq_top_iff_finrank_eq_one, FrameHom.map_sSup', AlgebraicGeometry.Scheme.Hom.quasiFiniteLocus_eq_top_iff, AlgebraicGeometry.instQuasiSeparatedToSpecΞ“OfQuasiSeparatedSpaceCarrierCarrierCommRingCat, CategoryTheory.Sieve.pullback_eq_top_of_mem, AlgebraicGeometry.Scheme.comp_appTop_assoc, AlgebraicGeometry.Proj.basicOpen_one, CompleteLattice.isCoatomistic_iff, CompletelyDistribLattice.top_sdiff, Subalgebra.op_top, AlgebraicGeometry.Scheme.isoSpec_Spec, CategoryTheory.Subfunctor.Subpresheaf.range_id, Finset.Nonempty.inf_eq_bot_iff, Field.exists_primitive_element_iff_finite_intermediateField, AlgebraicGeometry.IsClosedImmersion.hasAffineProperty, Field.Emb.Cardinal.filtration_apply, AlgebraicGeometry.Scheme.preimage_opensRange_toSpecΞ“, indiscreteTopology_iff, AlgebraicGeometry.Scheme.Spec.algebraMap_residueFieldIso_inv, Subalgebra.bot_eq_top_iff_finrank_eq_one, AlgebraicGeometry.Scheme.eq_zeroLocus_of_isClosed_of_isAffine, AddMonoidAlgebra.exists_finset_adjoin_eq_top, AlgebraicGeometry.Scheme.Opens.ΞΉ_preimage_self, CategoryTheory.Subfunctor.instIsIsoFunctorTypeΞΉTop, AlgebraicGeometry.Scheme.toSpecΞ“_image_zeroLocus, AlgebraicGeometry.PresheafedSpace.ofRestrict_top_c, AlgebraicGeometry.toSpecΞ“_SpecMap_Ξ“SpecIso_inv_assoc, AlgebraicGeometry.SheafedSpace.Ξ“_obj_op, Algebra.isAlgebraic_iff, TopologicalSpace.Closeds.coe_top, AlgebraicGeometry.IsAffineOpen.fromSpec_app_self_apply, NonUnitalStarAlgebra.comap_top, bot_codisjoint, FreeAlgebra.adjoin_range_ΞΉ, ContinuousMap.subalgebra_topologicalClosure_eq_top_of_separatesPoints, SSet.Subcomplex.topIso_inv_ΞΉ_assoc, AlgebraicGeometry.Scheme.inv_appTop, IntermediateField.finrank_top', AlgebraicGeometry.isLocalization_away_of_isAffine, Finset.map_truncatedSup, AlgebraicGeometry.IsAffineOpen.ΞΉ_basicOpen_preimage, AffineSubspace.direction_top, Affine.Simplex.span_eq_top, IsSimpleOrder.equivBool_symm_apply, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal, WithBot.sInf_empty, TopologicalSpace.Opens.eq_bot_or_top, AlgebraicGeometry.morphismRestrict_appTop, isSimpleOrder_iff, IsLocalRing.closed_point_mem_iff, AlgebraicGeometry.Scheme.IdealSheafData.ofIdealTop_ideal, Algebra.IsAlgebraic.isNormalClosure_iff, iInf_top, AlgebraicGeometry.Scheme.Hom.preimage_opensRange, StarSubalgebra.toSubalgebra_eq_top, AlgebraicGeometry.Ξ“SpecIso_hom_stalkClosedPointIso_inv, StarSubalgebra.mem_top, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_apply, CategoryTheory.GrothendieckTopology.bot_covering, AlgebraicGeometry.LocallyRingedSpace.Ξ“_map, AlgebraicGeometry.isCompactOpen_iff_eq_basicOpen_union, exists_subset_affineIndependent_affineSpan_eq_top, AlgebraicGeometry.Spec.algebraMap_stalkIso_inv, bot_lt_top, Algebra.adjoin_adjoin_coe_preimage, AlgebraicGeometry.eq_top_of_sigmaSpec_subset_of_isCompact, Algebra.adjoin_top, FrameHomClass.toInfTopHomClass, AlgebraicGeometry.PresheafedSpace.Ξ“_obj, AffineSubspace.perpBisector_eq_top, Algebra.adjoin_root_eq_top_of_isSplittingField, AlgebraicGeometry.PresheafedSpace.toRestrictTop_c, Algebra.surjective_algebraMap_iff, AlgebraicGeometry.Scheme.isoSpec_inv_toSpecΞ“_assoc, Field.primitive_element_iff_minpoly_degree_eq, Algebra.toSubmodule_eq_top, AlgHom.fieldRange_eq_top, Subgroup.map_eq_range_iff, DualNumber.range_inlAlgHom_sup_adjoin_eps, AlgebraicGeometry.Scheme.toOpen_eq, isPurelyInseparable_iff_perfectClosure_eq_top, top_disjoint, BoundedLatticeHomClass.map_top, bot_himp, Algebra.adjoin_univ, AlgHom.equalizer_same, CategoryTheory.Subfunctor.image_top, TopologicalSpace.Closeds.coe_eq_univ, AffineIndependent.affineSpan_eq_top_iff_card_eq_finrank_add_one, IntermediateField.adjoin_root_eq_top_of_isSplittingField, AlgebraicGeometry.Ξ“SpecIso_inv_Ξ“Spec_adjunction_homEquiv, algebraicClosure.eq_top_iff, isSimpleOrder_iff_isCoatom_bot, AddAction.BlockMem.coe_top, IsOpen.exists_between_affineIndependent_span_eq_top, Setoid.eq_top_iff, AffineSubspace.top_coe, AlgebraicGeometry.toSpecΞ“_SpecMap_Ξ“SpecIso_inv, Field.primitive_element_iff_minpoly_natDegree_eq, isAtomic_iff_isCoatomic, sInfHom.coe_top, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΞ“UnitOpensCarrierCarrierCommRingCatRingCatSheaf, Subalgebra.fg_top, NonUnitalAlgebra.toSubmodule_eq_top, AlgebraicGeometry.Scheme.Hom.inv_appTop, SSet.iSup_skeletonOfMono, affineSpan_coe_preimage_eq_top, AffineSubspace.pointwise_vadd_top, Complementeds.mk_top, TwoSidedIdeal.top_ringCon, AffineSubspace.perpBisector_self, Module.End.invtSubmodule.codisjoint_iff, AlgebraicGeometry.Spec_zeroLocus, AlgebraicGeometry.Scheme.Ξ“SpecIso_inv_naturality, IntermediateField.topEquiv_symm_apply_coe, affineSpan_eq_top_of_nonempty_interior, SSet.iSup_range_eq_top_of_isColimit, IntermediateField.rank_top', Subalgebra.topEquiv_symm_apply_coe, AlgebraicGeometry.Scheme.SpecΞ“Identity_inv_app, MeasureTheory.OuterMeasure.boundedBy_top, AlgebraicGeometry.Scheme.Pullback.diagonalCoverDiagonalRange_eq_top_of_injective, iInf_eq_dif, CompleteSublattice.coe_top, IntermediateField.topEquiv_apply, AlgebraicGeometry.basicOpen_eq_of_affine', AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom_appTop, AffineSubspace.topEquiv_apply, AlgebraicGeometry.instIsDominantToSpecΞ“OfCompactSpaceCarrierCarrierCommRingCat, AlgebraicGeometry.Scheme.preimage_eq_top_of_closedPoint_mem, iInf_extend_top, IsCyclotomicExtension.singleton_one, MeasureTheory.hittingBtwn_eq_sInf, SSet.finite_subcomplex_top_iff, AlgebraicGeometry.Scheme.isoSpec_Spec_inv, Algebra.adjoin_restrictScalars, alternatingGroup.isCoatom_stabilizer, NonUnitalAlgebra.coe_top, QuotientGroup.rightRel_eq_top, NonUnitalAlgebra.map_top, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo_assoc, AlgebraicGeometry.Scheme.topIso_hom, MeasurableSpace.generateFrom_singleton, AlgebraicGeometry.finite_appTop_of_universallyClosed, AffineSubspace.span_univ, IntermediateField.top_toSubfield, TopologicalSpace.IsOpenCover.iSup_eq_top, NonUnitalAlgebra.to_subring_eq_top, eq_top_of_bot_isCompl, RingOfIntegers.exponent_eq_one_iff, AlgebraicGeometry.specTargetImageFactorization_app_injective, Algebra.comap_top, AlgebraicGeometry.PresheafedSpace.Ξ“_map, NonUnitalAlgebra.toNonUnitalSubring_eq_top, IsSimpleOrder.instIsCoatomistic, AlgebraicGeometry.StructureSheaf.toOpenβ‚—_top_bijective, CategoryTheory.Sieve.functorInclusion_top_isIso, CompleteBooleanAlgebra.top_le_sup_compl, AffineBasis.isUnit_toMatrix_iff, Set.exists_seq_iSup_eq_top_iff_countable, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom, sInfHomClass.toInfTopHomClass, AffineSubspace.instNonemptySubtypeMemTop, AlgebraicGeometry.affineAnd_apply, Concept.intent_top, IntermediateField.fg_top, instDiscreteMeasurableSpace, MeasureTheory.OuterMeasure.top_apply', AlgebraicGeometry.AffineSpace.reindex_appTop_coord, AlgebraicGeometry.Spec.algebraMap_stalkIso_inv_assoc, IsCyclotomicExtension.iff_adjoin_eq_top, AlgEquiv.fieldRange_eq_top, Equiv.Perm.isCoatom_stabilizer, Field.Emb.Cardinal.iSup_adjoin_eq_top, AlgebraicGeometry.Ξ“Spec.toSpecΞ“_of, sInf_diff_singleton_top, Set.centralizer_empty, AlgebraicGeometry.exists_appTop_Ο€_eq_of_isLimit, AlgebraicGeometry.IsAffine.affine, StarSubalgebra.coe_top, AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.to_basicOpen, AlgebraicGeometry.SheafedSpace.Ξ“_obj, AlgebraicGeometry.Scheme.mem_basicOpen_top, ConvexCone.isGenerating_top, LieSubmodule.codisjoint_toSubmodule, isCompl_iff', AlgebraicGeometry.Scheme.Opens.ΞΉ_image_basicOpen', AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_naturality_assoc, Algebra.eq_top_iff, Filter.liminf_bot, AffineSubspace.comap_top, fourierSubalgebra_closure_eq_top, Filter.limsInf_bot, AlgebraicGeometry.AffineSpace.homOverEquiv_apply, NonUnitalStarAlgebra.range_id, Subalgebra.prod_top, CategoryTheory.Sieve.overEquiv_symm_top, NonUnitalAlgebra.comap_top, MeasureTheory.Measure.toOuterMeasure_top, NonUnitalStarAlgebra.map_top, AlgebraicGeometry.Scheme.comp_appTop, Finset.inf_eq_sInf_image, AlgebraicGeometry.IsClosedImmersion.isAffine_surjective_of_isAffine, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top, subalgebra_top_finrank_eq_submodule_top_finrank, IntermediateField.adjoin_eq_top_iff, Finset.inf_eq_iInf, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, AlgebraicGeometry.Scheme.fromSpecStalk_app, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_comp, Algebra.IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, AlgebraicGeometry.isField_of_universallyClosed, polynomialFunctions.topologicalClosure, sInf_empty, RingCon.range_mkₐ, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_eq_zero_iff_notMem_basicOpen, AlgebraicGeometry.Scheme.Spec.algebraMap_residueFieldIso_inv_assoc, compl_top, IsSimpleOrder.lt_top_iff_eq_bot, MeasurableSpace.map_top, RootPairing.coe_top, Algebra.map_top, Concept.extent_top, CategoryTheory.Subfunctor.top_obj, AlgebraicGeometry.Scheme.Hom.smoothLocus_eq_top, CategoryTheory.Sieve.functorPushforward_top, NonUnitalStarSubalgebra.center_eq_top, AlgebraicGeometry.IsAffineOpen.fromSpec_top, IntermediateField.bot_eq_top_of_finrank_adjoin_le_one, CategoryTheory.Presieve.isSeparatedFor_top, BoundedOrderHomClass.toTopHomClass, Subgroup.codisjoint_subgroupOf_sup, AlgebraicGeometry.Scheme.map_basicOpen_map, CompleteLattice.Ο‰ScottContinuous.top, BoundedLatticeHom.coe_toInfTopHom, StarAlgHom.range_eq_map_top, AlgebraicGeometry.Scheme.Hom.comp_appTop, NonUnitalStarAlgebra.eq_top_iff, Subalgebra.bot_eq_top_of_finrank_eq_one, AlgebraicGeometry.IsIntegralHom.hasAffineProperty, RingCon.toCon_eq_top, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo_Spec, MeasureTheory.OuterMeasure.map_top_of_surjective, isAtom_iff_eq_top, SemidirectProduct.mulEquivSubgroup_apply, isCompl_bot_top, AlgebraicGeometry.instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop, MvPolynomial.supported_univ, conductor_eq_top_iff_adjoin_eq_top, fixedPoints.gfp_eq_sInf_iterate, isAtom_top, AdjoinRoot.adjoinRoot_eq_top, AlgebraicGeometry.Scheme.IsLocallyDirected.V_self, borel_eq_top_of_countable, CategoryTheory.GrothendieckTopology.top_mem', TopCat.Presheaf.Ξ“germ_res_apply, IntermediateField.extendScalars_top, subsingleton_iff_bot_eq_top, ConvexCone.coe_top, MeasurableSpace.measurableSet_top, CategoryTheory.Presheaf.equalizerSieve_eq_top_iff, IntermediateField.fixedField_bot, NonUnitalAlgebra.range_eq_top, SemidirectProduct.mulEquivSubgroup_symm_apply, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_ne_zero_iff_mem_basicOpen, Equiv.Perm.isCoatom_stabilizer_of_ncard_lt_ncard_compl, AlgebraicGeometry.basicOpen_eq_of_affine, AlgebraicGeometry.LocallyRingedSpace.Ξ“_map_op, FrameHom.toFun_eq_coe, AlgebraicGeometry.Scheme.Ξ“SpecIso_naturality_assoc, AlgebraicGeometry.IsAffineOpen.fromSpec_toSpecΞ“_assoc, Complex.adjoin_I, SSet.Subcomplex.range_eq_top_iff, Con.toSetoid_top, AlgebraicGeometry.PresheafedSpace.toRestrictTop_base, AlgebraicGeometry.LocallyRingedSpace.isUnit_res_toΞ“SpecMapBasicOpen, Finset.exists_inf_eq_iInf, AlgebraicGeometry.Ξ“Spec_adjunction_homEquiv_eq, ContinuousMap.elemental_id_eq_top, Opens.toPretopology_grothendieckTopology, MeasureTheory.OuterMeasure.map_top, Algebra.FiniteType.out, subsingleton_iff_top_eq_bot, polynomialFunctions_closure_eq_top', Finset.inf_univ_eq_iInf, AffineSubspace.affineSpan_eq_top_iff_vectorSpan_eq_top_of_nontrivial, Projectivization.Subspace.span_univ, AlgebraicGeometry.Scheme.toIso_inv_ΞΉ, IsSimpleOrder.eq_top_of_lt, OpenSubgroup.toOpens_top, eq_top_of_isCompl_bot, iInf_eq_if, TopologicalSpace.Opens.map_top, CategoryTheory.Functor.imageSieve_map, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_preimage_zeroLocus_eq, AlgebraicGeometry.LocallyRingedSpace.SpecΞ“Identity_hom_app, CategoryTheory.Sieve.pullback_top, Set.not_top_subset, IntermediateField.insepDegree_top, ProjectiveSpectrum.basicOpen_one, BoundedLatticeHom.coe_comp_inf_hom', AlgebraicGeometry.Scheme.Ξ“evaluation_naturality, RingCon.coe_top, OpenAddSubgroup.toOpens_top, AlgebraicGeometry.Scheme.IdealSheafData.ker_glueDataObjΞΉ_appTop, CategoryTheory.Sieve.uliftFunctorInclusion_top_isIso, AlgebraicGeometry.Spec.germ_stalkMapIso_hom, NonUnitalStarSubalgebra.prod_top, IsCompl.codisjoint, AlgebraicGeometry.Spec.fromSpecStalk_eq, IsCompl.isAtom_iff_isCoatom, NonUnitalAlgebra.top_toSubring, ContinuousMapZero.elemental_eq_top, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over, IntermediateField.fg_top_iff, CategoryTheory.GrothendieckTopology.top_covers, CategoryTheory.Presieve.factorsThru_top, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_naturality, AlgebraicGeometry.Proj.iSup_basicOpen_eq_top, AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_basicOpen', induced_top, AlgebraicGeometry.Scheme.Hom.opensRange_of_isIso, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecMapBasicOpen_eq, IntermediateField.relfinrank_top_left, AlgebraicGeometry.Scheme.Opens.instIsIsoCommRingCatAppLEΞΉTopToScheme, BoundedLatticeHom.coe_comp_inf_hom, sInf_eq_top, iInf_neg, AlgebraicGeometry.IsAffineOpen.Ξ“SpecIso_hom_fromSpec_app, Finset.truncatedSup_infs_of_notMem, GroupTopology.toTopologicalSpace_top, iInf_lt_top, Con.toSetoid_eq_top, MeasureTheory.OuterMeasure.dirac_caratheodory, IntermediateField.finSepDegree_top, SSet.N.iSup_subcomplex_eq_top, IsOpen.affineSpan_eq_top, CategoryTheory.Sieve.id_mem_iff_eq_top, AlgebraicGeometry.instQuasiCompactToSpecΞ“OfCompactSpaceCarrierCarrierCommRingCat, IsAdjoinRoot.primitive_element_root, Monoid.Coprod.codisjoint_range_inl_range_inr, AlgebraicGeometry.AffineSpace.comp_homOfVector_assoc, AlgebraicGeometry.Scheme.Opens.ΞΉ_image_top, BoundedLatticeHomClass.toInfTopHomClass, isCompl_top_bot, Field.Emb.Cardinal.adjoin_basis_eq_top, NonUnitalAlgebra.top_toSubmodule, Algebra.TensorProduct.adjoin_tmul_eq_top, AlgebraicGeometry.Scheme.Ξ“_obj_op, ContinuousMap.starSubalgebra_topologicalClosure_eq_top_of_separatesPoints, SSet.Subcomplex.topIso_hom, CategoryTheory.Sieve.pullback_ofObjects_eq_top, AlgebraicGeometry.HasRingHomProperty.iff_of_source_openCover, AlgebraicGeometry.Scheme.Opens.topIso_hom, MeasureTheory.OuterMeasure.top_apply, CategoryTheory.presheafIsGeneratedBy_of_isFinite, IsSimpleOrder.bot_lt_iff_eq_top, Subalgebra.restrictScalars_top, QuotientGroup.leftRel_eq_top, PrimeSpectrum.basicOpen_one, AlgebraicGeometry.Scheme.Hom.comp_appTop_assoc, AlgebraicGeometry.IsAffineOpen.fromSpec_app_of_le, MeasureTheory.Measure.top_add, AlgebraicGeometry.AffineSpace.map_appTop_coord, AlgebraicGeometry.Scheme.toSpecΞ“_preimage_basicOpen, PrimeSpectrum.iSup_basicOpen_eq_top_iff', Filter.bliminf_false, MeasureTheory.hitting_eq_sInf, AlgebraicGeometry.isIso_fromTildeΞ“_iff, AlgebraicGeometry.PresheafedSpace.restrictTopIso_inv, polynomialFunctions_closure_eq_top, AlgebraicGeometry.Scheme.openCoverBasicOpenTop_f, IsSimpleOrder.eq_bot_or_eq_top, IsDedekindDomain.integer_univ, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecSheafedSpace_hom_c_app, LT.lt.eq_top, IsAdjoinRoot.adjoin_root_eq_top, NonUnitalAlgebra.toNonUnitalSubring_top, iInf_emptyset, AlgebraicGeometry.isField_of_isIntegral_of_subsingleton, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app, CategoryTheory.PreOneHypercover.sieveβ‚€_trivial, CategoryTheory.Subfunctor.preimage_eq_top_iff, Module.End.invtSubmodule.codisjoint_mk_iff, CategoryTheory.Subfunctor.Subpresheaf.eq_top_iff_isIso, CategoryTheory.Presieve.isSheafFor_top, AlgebraicGeometry.IsAffineOpen.fromSpec_toSpecΞ“, Subalgebra.bot_eq_top_iff_rank_eq_one, IntermediateField.coe_top, AlgebraicGeometry.AffineSpace.homOfVector_appTop_coord, AlgebraicGeometry.Scheme.IsQuasiAffine.isBasis_basicOpen, AlgebraicGeometry.Scheme.isoSpec_image_zeroLocus, Algebra.range_id, Polynomial.SplittingField.adjoin_rootSet, AlgebraicGeometry.isCompact_and_isOpen_iff_finite_and_eq_biUnion_basicOpen, isSplittingField_iff_intermediateField, AlgebraicGeometry.PresheafedSpace.restrict_top_presheaf, IsModularLattice.exists_inf_eq_and_codisjoint, TrivSqZeroExt.range_inlAlgHom_sup_adjoin_range_inr, Polynomial.adjoin_X, TopologicalSpace.Opens.coe_top, isCoatomic_of_isAtomic_of_complementedLattice_of_isModular, CategoryTheory.Subfunctor.epi_iff_range_eq_top, CategoryTheory.PreOneHypercover.sieve₁_trivial, StarSubalgebra.top_toSubalgebra, BoundedOrderHom.map_top', Monoid.Coprod.codisjoint_mrange_inl_mrange_inr, IsSimpleOrder.equivBool_apply, CategoryTheory.Subfunctor.Subpresheaf.range_eq_top, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_preimage_basicOpen_eq, instIndiscreteTopology, NonUnitalAlgebra.toNonUnitalSubsemiring_eq_top, TopologicalSpace.Opens.coe_eq_univ, Field.primitive_element_iff_algHom_eq_of_eval, Set.setOf_top, AlgebraicGeometry.IsAffineOpen.isoSpec_hom_appTop, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΞ“FreeOpensCarrierCarrierCommRingCat, CategoryTheory.Subfunctor.range_id, separableClosure.adjoin_eq_of_isAlgebraic_of_isSeparable, ContinuousMap.idealOfSet_isMaximal_iff, AddCon.toSetoid_eq_top, AlgebraicGeometry.instIsAffineHomΞΉBasicOpen, compl_bot, AddAction.isCoatom_stabilizer_iff_preprimitive, AddAction.IsPreprimitive.isCoatom_stabilizer_of_isPreprimitive, CategoryTheory.Sieve.generate_of_contains_isSplitEpi, Subalgebra.rank_top, AlgebraicGeometry.HasRingHomProperty.iff_of_isAffine, Subalgebra.bot_eq_top_of_rank_eq_one, sInfHom.top_apply, CategoryTheory.Subfunctor.Subpresheaf.range_toRange, AlgebraicGeometry.SheafedSpace.restrictTopIso_hom, AlgebraicGeometry.Ξ“Spec.toSpecΞ“_unop, MeasureTheory.OuterMeasure.toMeasure_top, Prop.top_eq_true, IsSimpleOrder.instIsCoatomic, subalgebra_top_rank_eq_submodule_top_rank, isComplemented_top, AlgebraicGeometry.SheafedSpace.Ξ“_map_op, RingCon.toCon_top, isCyclic_tfae, affineSpan_eq_top_iff_nonempty_of_subsingleton, AlgebraicGeometry.SpecMap_Ξ“SpecIso_inv_toSpecΞ“_assoc, CategoryTheory.GrothendieckTopology.top_covering, alternatingGroup.isCoatom_stabilizer_of_ncard_lt_ncard_compl, Filter.limsSup_top, AlgebraicGeometry.LocallyRingedSpace.Ξ“_obj, AlgebraicGeometry.Scheme.Spec_fromSpecStalk, IntermediateField.sepDegree_top, Subgroup.isCoatom_comap, AlgebraicGeometry.Scheme.toSpecΞ“_base
bridge: top_eq_true

Theorems

NameKindAssumesProvesValidatesDepends On
instSubsingleton πŸ“–mathematicalβ€”BoundedOrder
Preorder.toLE
PartialOrder.toPreorder
β€”OrderTop.instSubsingleton
OrderBot.instSubsingleton

IsBot

Definitions

NameCategoryTheorems
rec πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot πŸ“–mathematicalIsBot
Preorder.toLE
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
β€”isBot_iff_eq_bot

IsMax

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top πŸ“–mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
Top.top
OrderTop.toTop
β€”isMax_iff_eq_top

IsMin

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot πŸ“–mathematicalIsMin
Preorder.toLE
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
β€”isMin_iff_eq_bot

IsTop

Definitions

NameCategoryTheorems
rec πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top πŸ“–mathematicalIsTop
Preorder.toLE
PartialOrder.toPreorder
Top.top
OrderTop.toTop
β€”isTop_iff_eq_top

LT.lt

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt πŸ“–mathematicalPreorder.toLTBot.bot
OrderBot.toBot
Preorder.toLE
β€”bot_lt_of_lt
lt_top πŸ“–mathematicalPreorder.toLTTop.top
OrderTop.toTop
Preorder.toLE
β€”lt_top_of_lt
ne_bot πŸ“–β€”Preorder.toLTβ€”β€”ne_bot_of_gt
ne_top πŸ“–β€”Preorder.toLTβ€”β€”ne_top_of_lt

Ne

Theorems

NameKindAssumesProvesValidatesDepends On
bot_lt πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
β€”bot_lt_iff_ne_bot
bot_lt' πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
β€”bot_lt
lt_top πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
Top.top
OrderTop.toTop
Preorder.toLE
β€”lt_top_iff_ne_top
lt_top' πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
Top.top
OrderTop.toTop
Preorder.toLE
β€”lt_top

OrderBot

Definitions

NameCategoryTheorems
toBot πŸ“–CompOp
827 math, 1 bridgemath: Finset.bot_eq_empty, le_bot_iff, Algebra.range_ofId, sInf_univ, PNat.bot_eq_one, CategoryTheory.sheafBotEquivalence_functor, Subalgebra.LinearDisjoint.inf_eq_bot, Set.Ici.coe_bot, Submodule.rTensorOne_symm_apply, IsAtom.lt_iff, coinduced_bot, AlgebraicGeometry.Scheme.bot_mem_grothendieckTopology, Finset.Ico_bot, Finpartition.empty_parts, YoungDiagram.cells_bot, min_eq_bot, Concept.intent_bot, iSupIndep.injOn_iInf, IntermediateField.LinearDisjoint.iff_inf_eq_bot, MeasurableSpace.comap_const, nhds_bot_basis, PrimeSpectrum.asIdeal_bot, Disjoint.le_bot, partialSups_succ', Submodule.comm_trans_lTensorOne, IntermediateField.coe_algebraMap_over_bot, RingCon.toCon_eq_bot, NonUnitalStarAlgebra.mem_bot, IsDedekindDomain.HeightOneSpectrum.iInf_localization_eq_bot, grade_bot, Seminorm.bot_eq_zero, lt_compl_self, Additive.ofMul_bot, Algebra.adjoin_singleton_intCast, BoundedOrderHomClass.map_bot, BotHom.bot_apply, min_bot_left, IsCompl.inf_left_eq_bot_iff, AddMonoidAlgebra.supDegree_single, MeasurableSpace.comap_bot, codisjoint_bot, ProperCone.innerDual_univ, DiscreteQuotient.proj_bot_inj, WithBot.subtypeOrderIso_symm_apply, List.foldr_max_of_ne_nil, MeasureTheory.hittingAfter_bot_le_iff, AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, AlgebraicGeometry.Scheme.Hom.preimage_bot, IntermediateField.coe_bot, Submodule.mulMap_one_right_eq, bot_sdiff, IntermediateField.lift_insepDegree_bot', Disjoint.eq_bot_of_ge, NonUnitalAlgebra.coe_bot, bot_lt_of_lt, sSup_eq_bot, NonUnitalStarAlgebra.coe_bot, IsCompl.bihimp_eq_bot, iSup_false, algebraicClosure.algebraicClosure_eq_bot, AffineSubspace.comap_bot, PUnit.bot_eq, BoundedLatticeHom.coe_comp_sup_hom', Finsupp.bot_eq_zero, bot_lt_iSup, Multiset.sup_zero, CategoryTheory.Presieve.isSheaf_bot, MeasurableSpace.generateFrom_empty, Set.accumulate_bot, IsGaloisGroup.fixedPoints_top, RingCon.comap_bot, MeasureTheory.condLExp_bot', CategoryTheory.Functor.WellOrderInductionData.Extension.map_zero, IsLowerSet.bot_mem, IntermediateField.botEquiv_symm, Subalgebra.op_bot, YoungDiagram.coe_bot, Algebra.adjoin_singleton_algebraMap, CategoryTheory.TransfiniteCompositionOfShape.fac_assoc, IntermediateField.relfinrank_bot_right, Coheyting.boundary_top, LTSeries.exists_relSeries_covBy_and_head_eq_bot_and_last_eq_bot, AlgebraicGeometry.Scheme.IdealSheafData.radical_bot, InfiniteGalois.mem_bot_iff_fixed, ProbabilityTheory.condIndep_bot_left, CategoryTheory.Functor.WellOrderInductionData.surjective, InnerProductSpace.gramSchmidt_bot, Polynomial.IsSplittingField.splits_iff, Partition.bot_notMem, himp_bot, bot_lt_affineSpan, StarSubalgebra.bot_toSubalgebra, LowerSet.Iio_bot, SemilatInfCat_dual_comp_forget_to_partOrd, BotHom.dual_apply_apply, Icc_isBoundaryPoint_bot, Subfield.splits_bot, Algebra.toSubring_bot, partialSups_add_one', PrincipalSeg.map_bot, Subalgebra.LinearDisjoint.inf_eq_bot_of_commute, CategoryTheory.Functor.WellOrderInductionData.sectionsMk_val_op_bot, sSup_empty, IntermediateField.adjoin_zero, IsBot.eq_bot, IsAtomic.eq_bot_or_exists_atom_le, Subalgebra.algebra_isAlgebraic_bot_right, CategoryTheory.TransfiniteCompositionOfShape.iic_isoBot, BoxIntegral.Prepartition.IsPartition.compl_eq_bot, SemilatSupCat.Iso.mk_inv_toFun, Subalgebra.comm_trans_rTensorBot, AffineSubspace.not_wSameSide_bot, AlgebraicGeometry.Scheme.bot_mem_precoverage, Finset.sup_erase_bot, Complementeds.mk_bot, Subalgebra.algebra_isAlgebraic_bot_left_iff, ContinuousMap.concatCM_left, CategoryTheory.TransfiniteCompositionOfShape.ofArrowIso_isoBot, AddCon.toSetoid_bot, Finset.Iio_eq_Ico, TopologicalSpace.Closeds.coe_eq_empty, max_bot_left, disjoint_bot_right, bot_covBy_top, ProperCone.coe_bot, Order.Ideal.principal_bot, sSupHom.coe_bot, isBot_iff_eq_bot, IsIntegrallyClosedIn.integralClosure_eq_bot, CategoryTheory.Subobject.bot_eq_initial_to, integralClosure_idem, ClosedSubmodule.mem_bot, Sum.Lex.inl_bot, instIsAbelianGaloisSubtypeMemIntermediateFieldBot, CategoryTheory.Sieve.functorPullback_bot, Algebra.mem_bot, WithTop.instOrderedSub, CategoryTheory.Sieve.generate_bot, induced_topology_pure, FirstOrder.Language.Substructure.small_bot, Multiplicative.ofAdd_eq_bot, disjoint_top, InitialSeg.map_bot, WellFoundedGT.finite_ne_bot_of_iSupIndep, Order.IsNormal.ext, GradeMinOrder.exists_nat_orderEmbedding_of_forall_covby_finite, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, StarSubalgebra.mem_bot, ENNReal.bot_eq_zero, IntermediateField.bot_toSubalgebra, Algebra.toSubmodule_bot, Algebra.map_bot, Subfield.mem_bot_iff_pow_eq_self, List.max_le_of_forall_le, Subfield.isTotallyReal_bot, IsAtom.bot_covBy, Fin.rev_top, AlgebraicGeometry.Scheme.IdealSheafData.zero_eq_bot, Finset.Icc_bot_top, Algebra.adjoin_singleton_zero, Prop.bot_eq_false, Algebra.coe_bot, Setoid.injective_iff_ker_bot, MeasureTheory.condLExp_bot, sSupHom.bot_apply, CategoryTheory.HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ΞΉ_app_bot, Multiset.sup_coe, Filter.OrderBot.atBot_eq, SSet.Subcomplex.instSubsingletonHomToSSetBot, Fintype.IsSimpleOrder.univ, Nimber.bot_eq_zero, AlgebraicGeometry.isSchemeTheoreticallyDominant_iff, Finpartition.ofErase_parts, bot_symmDiff, NatOrdinal.bot_eq_zero, Flag.bot_mem, sdiff_self, IsDedekindDomain.integer_empty, AffineSubspace.not_sSameSide_bot, eq_bot_of_isCompl_top, Ordinal.bot_eq_zero, Subalgebra.eq_bot_of_finrank_one, IsPredArchimedean.pred_findAtom, MeasureTheory.hittingBtwn_bot_le_iff, continuous_bot, IntermediateField.LinearDisjoint.bot_left, FirstOrder.Language.Substructure.cg_bot, IntermediateField.isTotallyReal_bot, DiscreteQuotient.proj_bot_bijective, MeasureTheory.lowerCrossingTime_zero, compl_inf_eq_bot, BoxIntegral.Prepartition.compl_top, SupBotHom.bot_apply, Subalgebra.lTensorBot_one_tmul, WithBot.succ_eq_bot, Pairwise.disjoint_extend_bot, Projectivization.Subspace.span_empty, limsup_eq_bot, Subalgebra.mulMap_bot_left_eq, Finset.truncatedInf_union_of_notMem, OrderIsoClass.toSupBotHomClass, BoundedLatticeHom.coe_comp_lattice_hom', AffineSubspace.bot_coe, IntermediateField.instFiniteSubtypeMemBot, not_lt_bot, AffineSubspace.parallel_bot_iff_eq_bot, FractionalIdeal.absNorm_bot, CategoryTheory.TransfiniteCompositionOfShape.iic_isColimit, bot_sup_eq, ClosedSubmodule.bot_orthogonal_eq_top, essSup_const_bot, AlgebraicGeometry.Scheme.ker_toSpecΞ“, AlgebraicGeometry.Scheme.IdealSheafData.ideal_bot, WellFoundedLT.induction_bot, IsPredArchimedean.findAtom_eq_bot, CategoryTheory.Subobject.bot_factors_iff_zero, disjoint_iff, MonomialOrder.bot_eq_zero, CompleteSublattice.bot_mem, Directed.extend_bot, List.le_max_of_le, IntermediateField.finrank_eq_one_iff, Finpartition.parts_eq_empty_iff, AddMonoidAlgebra.supDegree_zero, BoxIntegral.Prepartition.bot_boxes, IntermediateField.eq_bot_of_isAlgClosed_of_isAlgebraic, disjoint_bot_left, IntermediateField.insepDegree_bot', ClosedSubmodule.top_orthogonal_eq_bot, Set.Ico.coe_bot, isCoatom_bot, PrimeSpectrum.basicOpen_zero, Set.Icc_bot_top, CategoryTheory.GrothendieckTopology.bot_covers, AffineSubspace.smul_bot, isDenseEmbedding_pure, TopologicalSpace.Opens.coe_eq_empty, NonUnitalAlgebra.toSubmodule_bot, BoundedLatticeHom.coe_comp_sup_hom, not_supIrred_bot, CategoryTheory.SmallObject.SuccStruct.Iteration.obj_bot, PrimeSpectrum.iInf_localization_eq_bot, IntermediateField.bot_eq_top_of_finrank_adjoin_eq_one, Finset.sup_empty, IntermediateField.botContinuousSMul, Subalgebra.unop_bot, isComplemented_bot, AffineSubspace.parallel_iff_direction_eq_and_eq_bot_iff_eq_bot, BoundedLatticeHom.coe_toSupBotHom, ProperCone.dual_univ, StrictMono.apply_eq_bot_iff, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty, MeasureTheory.Martingale.condExp_stoppedValue_stopping_time_ae_eq_restrict_le, Algebra.bijective_algebraMap_iff, Set.Iic.complementedLattice_iff, hnot_top, bot_lt_iff_ne_bot, SSet.instHasDimensionLTToSSetBotSubcomplex, CategoryTheory.MorphismProperty.bot_mem_precoverage, IntermediateField.rank_adjoin_eq_one_iff, CategoryTheory.TransfiniteCompositionOfShape.map_isoBot, sSup_diff_singleton_bot, Finset.Iic_bot, TopologicalSpace.Closeds.coe_bot, Order.not_isSuccLimit_bot, IntermediateField.adjoin_one, CategoryTheory.sheafBotEquivalence_inverse_map_val, OrdinalApprox.lfpApprox_ord_eq_lfp, ClosedSubmodule.coe_bot, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_top_iff, LowerSet.Iio_eq_bot, CategoryTheory.TransfiniteCompositionOfShape.fac, Setoid.bot_def, CategoryTheory.Subfunctor.Subpresheaf.bot_obj, Subfield.bot_eq_of_zMod_algebra, NNReal.bot_eq_zero, LT.lt.eq_bot, SemilatSupCat.dual_map, CategoryTheory.Limits.imageSubobject_zero, Order.pred_bot, Finset.Iic_eq_Icc, MeasurableSpace.measurableSet_bot_iff, Subfield.map_bot, Submodule.comm_trans_rTensorOne, CategoryTheory.Subobject.map_bot, Disjoint.out, CategoryTheory.sheafBotEquivalence_unitIso, BoxIntegral.Prepartition.iUnion_eq_empty, MeasureTheory.Content.innerContent_bot, SimpleGraph.Finsubgraph.coe_bot, IntermediateField.extendScalars_self, BoundedOrderHom.coe_comp_botHom, Finpartition.default_eq_empty, hnot_bot, CategoryTheory.Subobject.mk_eq_bot_iff_zero, AlgebraicGeometry.Scheme.IdealSheafData.bot_mul, isAtomic_iff, le_compl_self, IsAtom.le_iff, csSup_empty, GaloisConnection.l_eq_bot, Finset.inf_eq_bot_iff, CategoryTheory.sheafBotEquivalence_inverse_obj_val, Subfield.roots_X_pow_char_sub_X_bot, Submodule.lTensorOne'_tmul, Disjoint.eq_bot_of_self, Submodule.rTensorOne'_tmul_one, Con.toSetoid_eq_bot, MeasureTheory.condExp_bot, Submodule.rTensorOne'_tmul, TopologicalSpace.Opens.mem_bot, MeasureTheory.Martingale.stoppedValue_min_ae_eq_condExp, iSupIndep.injOn, Seminorm.sSup_empty, Finset.truncatedInf_empty, Heyting.Regular.coe_bot, MeasurableSpace.generateFrom_singleton_univ, Quantale.mul_bot, IsLprojection.coe_bot, Set.setOf_bot, SupBotHom.coe_sup, Set.bot_eq_empty, CompleteLinearOrder.himp_bot, sup_eq_bot_iff, Multiset.bot_eq_zero, iSupIndep_ne_bot, AlgebraicGeometry.LocallyRingedSpace.basicOpen_zero, FractionalIdeal.bot_eq_zero, RootPairing.invtRootSubmodule.eq_bot_iff, Set.Ioi_bot, eq_bot_or_bot_lt, StarSubalgebra.coe_bot, DFinsupp.bot_eq_zero, UniformSpace.toTopologicalSpace_bot, CompHausLike.LocallyConstant.locallyConstantIsoContinuousMap_hom, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot, IntermediateField.finrank_adjoin_eq_one_iff, Nonneg.bot_eq, IntermediateField.bot_eq_top_of_rank_adjoin_eq_one, sSup_eq_bot', bot_eq_one', Multiplicative.toAdd_eq_bot, AlgebraicGeometry.Scheme.instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensBot, Finset.Ici_bot, Partition.bot_notMem', IntermediateField.finrank_bot, symmDiff_self, sdiff_sdiff_self, Order.isSuccPrelimit_bot, isCoatom_iff_eq_bot, IsIntegrallyClosed.integralClosure_eq_bot, IsIntegrallyClosed.integralClosure_eq_bot_iff, IntermediateField.sepDegree_bot, AlgebraicGeometry.Scheme.Hom.ker_eq_bot_of_isIso, bddLat_dual_comp_forget_to_semilatSupCat, AddQuantale.add_bot, Submodule.rTensorOne_tmul, StrictAnti.apply_eq_bot_iff, IntermediateField.finInsepDegree_bot', IntermediateField.restrictScalars_bot_eq_self, Disjoint.eq_bot_of_le, sup_bot_eq, BotHom.coe_bot, Additive.toMul_bot, IntermediateField.fg_bot, IccLeftChart_extend_bot, Filter.limsInf_top, AlgebraicGeometry.Scheme.nilradical_eq_bot, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_bot_iff, GroupTopology.toTopologicalSpace_bot, Order.krullDim_le_one_iff_of_boundedOrder, Algebra.adjoin_singleton_one, transfiniteIterate_bot, CategoryTheory.TransfiniteCompositionOfShape.ici_isoBot, CompleteSublattice.coe_bot, IntermediateField.adjoin_empty, BoxIntegral.Prepartition.iUnion_bot, ciSup_of_empty, OrderHom.bot_def, IsUpperSet.bot_mem, Fin.bot_eq_zero, Field.Emb.Cardinal.eq_bot_of_not_nonempty, IntermediateField.rank_bot, CategoryTheory.TransfiniteCompositionOfShape.iic_F, IsAtom.bot_lt, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w, iSup_eq_dif, Seminorm.coe_bot, separableClosure_inf_perfectClosure, Multiplicative.ofAdd_bot, inf_compl_self, Subalgebra.rTensorBot_tmul_one, sdiff_eq_bot_iff, Nucleus.coe_bot, WithBot.orderSucc_bot, MeasureTheory.hitting_bot_le_iff, BoundedLatticeHom.map_bot', Subfield.bot_eq_of_charZero, IsIntegrallyClosedIn.integralClosure_eq_bot_iff, Finset.truncatedInf_singleton, bddLat_dual_comp_forget_to_semilatInfCat, IsCompl.inf_eq_bot, IntermediateField.bot_eq_top_iff_finrank_eq_one, IntermediateField.adjoin_eq_bot_iff, MeasureTheory.SimpleFunc.simpleFunc_bot', Submodule.rTensorOne_tmul_one, Finset.truncatedInf_sups_of_notMem, CategoryTheory.GrothendieckTopology.trivial_eq_bot, FirstOrder.Language.Substructure.closure_empty, Filter.limsup_bot, IntermediateField.lift_sepDegree_bot', bot_le, OrderIsoClass.toBotHomClass, AffineSubspace.coe_eq_bot_iff, Finset.Nonempty.inf_eq_bot_iff, iSupβ‚‚_eq_bot, essSup_measure_zero, Algebra.adjoin_singleton_natCast, Finset.min_eq_bot, IntermediateField.LinearDisjoint.inf_eq_bot, SupBotHom.sup_apply, FirstOrder.Language.Substructure.map_bot, Subalgebra.bot_eq_top_iff_finrank_eq_one, Subalgebra.mulMap_bot_right_eq, BotHom.sup_apply, CategoryTheory.Subfunctor.bot_obj, Set.dissipate_bot, IsMin.eq_bot, Subalgebra.lTensorBot_symm_apply, MeasureTheory.upperCrossingTime_zero, bot_covBy_iff, bot_codisjoint, Pi.isAtom_iff_eq_single, Con.toSetoid_bot, max_eq_bot, ClosedSubmodule.orthogonal_eq_top_iff, MeasureTheory.sigmaFinite_bot_iff, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_isoBot, iSup_neg, IntermediateField.lift_bot, Order.height_bot, IsSimpleOrder.equivBool_symm_apply, IsGalois.fixedField_top, InfHom.withBot'_toFun, TopologicalSpace.Opens.eq_bot_or_top, isSimpleOrder_iff, MulAction.BlockMem.coe_bot, ext_bot, MeasureTheory.hittingAfter_eq_sInf, MeasureTheory.condLExp_bot_ae_eq, CategoryTheory.GrothendieckTopology.bot_covering, SupHom.withBot'_toFun, Submodule.mulMap_one_left_eq, AffineSubspace.isEmpty_bot, IntermediateField.adjoin_simple_eq_bot_iff, IntermediateField.relfinrank_bot_left, LT.lt.bot_lt, CategoryTheory.MorphismProperty.IsStableUnderTransfiniteCompositionOfShape.of_isStableUnderColimitsOfShape.mem_map_bot_le, AlgebraicGeometry.Scheme.Hom.ker_eq_bot, RingCon.matrix_bot, bot_lt_top, HeytingHomClass.map_bot, AlgebraicGeometry.Scheme.instIsIsoSubschemeΞΉBotIdealSheafData, TopologicalSpace.Opens.mk_empty, iSup_ne_bot_subtype, IsLocalRing.Ring.KrullDimLE.eq_bot_or_eq_top, IntermediateField.adjoin_intCast, Pi.isAtom_iff, Algebra.surjective_algebraMap_iff, IntermediateField.sepDegree_bot', ProperCone.toPointedCone_bot, CategoryTheory.Presheaf.isSheaf_bot, IntermediateField.LinearDisjoint.bot_right, Filter.limsSup_bot, Finset.sup_eq_bot_of_isEmpty, BoxIntegral.Prepartition.distortion_bot, AffineSubspace.pointwise_vadd_bot, CategoryTheory.Subobject.bot_arrow, IsAtom.Iic_eq, iSup_emptyset, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_inv, discreteTopology_bot, BotHom.dual_symm_apply_apply, AlgebraicGeometry.Scheme.Hom.ker_toNormalization, WithBot.succ_bot, SemilatSupCat.Iso.mk_hom_toFun, compl_bihimp_self, RingCon.coe_bot, top_disjoint, IntermediateField.rank_eq_one_iff, BoxIntegral.norm_volume_sub_integral_face_upper_sub_lower_smul_le, bot_himp, ContDiffMapSupportedIn.seminorm_eq_bot_of_gt, Subalgebra.fg_bot, disjoint_of_le_iff_left_eq_bot, IntermediateField.eq_bot_of_isPurelyInseparable_of_isSeparable, ClosedSubmodule.inf_orthogonal_eq_bot, ProjectiveSpectrum.basicOpen_zero, map_eq_bot_iff, AffineSubspace.not_sOppSide_bot, isSimpleOrder_iff_isCoatom_bot, IsMaxChain.bot_mem, LatticeHom.withBot'_toFun, Additive.ofMul_eq_bot, CategoryTheory.Subobject.bot_eq_zero, isDenseInducing_pure, symmDiff_eq_bot, eq_bot_of_top_isCompl, IntermediateField.isScalarTower_over_bot, ProbabilityTheory.condVar_bot', max_bot_right, bot_mem_lowerBounds, IntermediateField.bot_toSubfield, compl_inf_self, AffineSubspace.span_empty, WithBot.lt_coe_bot, NonUnitalStarAlgebra.map_bot, AffineSubspace.map_bot, Subalgebra.lTensorBot_tmul, NonUnitalAlgebra.adjoin_empty, TopCat.Presheaf.isSheaf_on_punit_iff_isTerminal, CategoryTheory.Sieve.functorPushforward_bot, ProbabilityTheory.condIndep_bot_right, Order.Frame.himp_bot, mem_bot_iff_intCast, IntermediateField.adjoin_natCast, BoundedLatticeHomClass.toSupBotHomClass, TopologicalSpace.Opens.coe_bot, WithBot.subtypeOrderIso_apply_coe, Complementeds.coe_bot, Set.Iic_bot, AlgebraicGeometry.Scheme.IdealSheafData.comap_bot, TopologicalSpace.Closeds.isClopen_singleton_bot, IsCyclotomicExtension.singleton_one, MeasureTheory.hittingBtwn_eq_sInf, isMin_iff_eq_bot, CategoryTheory.TransfiniteCompositionOfShape.ofComposableArrows_isoBot, IntermediateField.isPurelyInseparable_bot, AddQuantale.bot_add, Order.le_pred_iff_eq_bot, CategoryTheory.TransfiniteCompositionOfShape.iic_incl_app, inf_bot_eq, AffineSubspace.map_eq_bot_iff, AddAction.BlockMem.coe_bot, Subalgebra.rTensorBot_symm_apply, RootPairing.coe_bot, IsAtom.ne_iff_eq_bot, ProbabilityTheory.indep_bot_right, Set.Icc.coe_bot, ProbabilityTheory.condVar_bot_ae_eq, AffineSubspace.direction_bot, FractionalIdeal.bot_lt_mul_inv, MeasureTheory.upperCrossingTime_zero', MaximalSpectrum.iInf_localization_eq_bot, Finset.Icc_bot, Algebra.IsCentral.center_eq_bot, IsGaloisGroup.fixingSubgroup_bot, Multiplicative.toAdd_bot, BddLat.coe_forget_to_semilatSup, ProperCone.mem_bot, Filter.tendsto_atBot_pure, ProbabilityTheory.indep_bot_left, GaloisConnection.l_bot, BotHom.symm_dual_id, Nat.Subtype.coe_bot, Seminorm.closedBall_bot, Submodule.lTensorOne_symm_apply, BoundedOrderHomClass.toBotHomClass, Finset.Iio_bot, IntermediateField.finInsepDegree_bot, MvPolynomial.supported_empty, ClosedSubmodule.toSubmodule_bot, LinearOrder.bot_topologicalSpace_eq_generateFrom, MeasureTheory.SimpleFunc.simpleFunc_bot, Set.Ico_bot, affineSpan_eq_bot, ProbabilityTheory.condVar_bot, fixedPoints.lfp_eq_sSup_iterate, Filter.limsup_const_bot, JacobsonNoether.exists_separable_and_not_isCentral', IsPredArchimedean.findAtom_bot, Fin.rev_last_eq_bot, Submodule.lTensorOne'_one_tmul, AlgebraicGeometry.Proj.basicOpen_zero, IntermediateField.finrank_bot', sdiff_top, Quantale.bot_mul, CategoryTheory.Pretopology.toGrothendieck_bot, Partition.bot_lt_of_mem, Setoid.mk_eq_bot, Subalgebra.rank_eq_one_iff, sdiff_bot, CategoryTheory.HasLiftingProperty.transfiniteComposition.hasLiftingPropertyFixedBot_ΞΉ_app_bot, DiscreteTopology.eq_bot, Order.Ideal.bot_mem, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w_assoc, IntermediateField.botEquiv_def, Additive.toMul_eq_bot, Valuation.Integers.integralClosure, IntermediateField.finSepDegree_bot', HeytingHom.map_bot', stronglyMeasurable_bot_iff, ContinuousMap.concatCM_right, compl_top, IntermediateField.eq_bot_of_isSepClosed_of_isSeparable, IsSimpleOrder.lt_top_iff_eq_bot, WellFoundedLT.finite_ne_bot_of_iSupIndep, iSup_eq_if, Multiset.max_le_of_forall_le, ConditionallyCompleteLinearOrderBot.csSup_empty, FirstOrder.Language.Substructure.elementarySkolem₁Reduct.instSmall, Finset.Colex.toColex_empty, bot_bihimp, Set.Icc_bot, Subalgebra.eq_bot_of_rank_le_one, isGLB_univ, BotHom.coe_sup, IntermediateField.bot_eq_top_of_finrank_adjoin_le_one, isBot_bot, Submodule.lTensorOne_tmul, AlgebraicGeometry.IsSchemeTheoreticallyDominant.ker_eq_bot, AddCon.toSetoid_eq_bot, IntermediateField.relrank_bot_right, AlgebraicGeometry.Scheme.IdealSheafData.support_top, Subalgebra.comm_trans_lTensorBot, OrderType.bot_eq_zero, InfiniteGalois.fixedField_bot, CompletelyDistribLattice.himp_bot, IsCompl.inf_right_eq_bot_iff, NonUnitalAlgebra.map_bot, IsSepClosed.separableClosure_eq_bot_iff, Subfield.closure_empty, HeytingAlgebra.himp_bot, Order.coheight_bot_eq_krullDim, Subalgebra.bot_eq_top_of_finrank_eq_one, DiscreteQuotient.proj_bot_eq, isCompl_bot_top, AlgebraicGeometry.Scheme.basicOpen_zero, IsSimpleOrder.eq_bot_of_lt, AlgebraicGeometry.Scheme.IdealSheafData.map_bot, iInf_eq_bot, eq_bot_of_singletons_open, Subalgebra.isAlgebraic_bot_iff, disjointed_bot, TwoSidedIdeal.bot_ringCon, AlgebraicGeometry.isAffineOpen_bot, List.foldr_sup_eq_sup_toFinset, nhds_bot_order, iInfβ‚‚_eq_bot, ciSup_false, SupBotHom.coe_bot, perfectClosure.eq_bot_of_isSeparable, Order.IsSuccLimit.bot_lt, subsingleton_iff_bot_eq_top, BotHom.symm_dual_comp, ProbabilityTheory.Kernel.indep_bot_left, Finpartition.bot_notMem, Order.le_succ_bot_iff, BotHom.dual_comp, MeasureTheory.sigmaFinite_trim_bot_iff, OrdinalApprox.lfp_mem_range_lfpApprox, partialSups_bot, Partition.coe_removeBot, not_bot_lt_iff, Heyting.isRegular_bot, Ne.bot_lt', BoundedLatticeHomClass.map_bot, subsingleton_iff_top_eq_bot, BotHom.dual_id, FirstOrder.Language.Substructure.instIsEmptySubtypeMemBotOfConstants, IntermediateField.insepDegree_bot, bot_eq_zero'', IsAlgClosed.algebraicClosure_eq_bot_iff, IntermediateField.rank_bot', disjoint_iff_inf_le, IsAntichain.bot_mem_iff, Finset.sup_bot, BotHom.inf_apply, Disjoint.eq_iff, AlgebraicGeometry.genericPoint_eq_bot_of_affine, Order.lt_succ_bot_iff, Filter.blimsup_false, eq_bot_iff, MeasureTheory.condExp_bot', IsGalois.tfae, Subfield.card_bot, AlgebraicGeometry.basicOpen_eq_bot_iff, nhds_bot_basis_Iic, IntermediateField.LinearDisjoint.eq_bot_of_self, UpperSet.Ici_bot, SubRootedTree.bot_mem_iff, ProbabilityTheory.Kernel.indep_bot_right, separableClosure.separableClosure_eq_bot, SemilatSupCat_dual_comp_forget_to_partOrd, AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_of_isNilpotent, NonUnitalAlgebra.mem_bot, not_isMax_bot, AlgebraicGeometry.Scheme.IdealSheafData.support_bot, Submodule.lTensorOne_one_tmul, BoxIntegral.Prepartition.notMem_bot, iSup_of_empty, CategoryTheory.sheafBotEquivalence_counitIso, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w₁, isLUB_empty, disjoint_self, AffineSubspace.not_wOppSide_bot, Representation.invtSubmodule.coe_bot, isLeast_bot_iff, isCompl_top_bot, Subfield.extendScalars_self, iSup_eq_bot, csInf_univ, IntermediateField.relrank_bot_left, CompleteBooleanAlgebra.inf_compl_le_bot, Subalgebra.LinearDisjoint.eq_bot_of_commute_of_self, AlgebraicGeometry.Scheme.basicOpen_eq_bot_iff_forall_evaluation_eq_zero, Subalgebra.finrank_bot, bot_eq_zero, Module.End.invtSubmodule.mk_eq_bot_iff, ZMod.fieldRange_castHom_eq_bot, lowerBounds_univ, IsSimpleOrder.bot_lt_iff_eq_top, AlgebraicGeometry.Scheme.IdealSheafData.mul_bot, bihimp_hnot_self, Finset.fold_inf_univ, AffineSubspace.eq_bot_or_nonempty, GaloisConnection.l_u_bot, MeasureTheory.hitting_eq_sInf, Finset.sup_eq_bot_iff, IntermediateField.mem_bot, OrderIso.map_bot, Algebra.IsCentral.out, IsSimpleOrder.eq_bot_or_eq_top, GaloisCoinsertion.u_bot, SemilatSupCat.coe_forget_to_partOrd, BotHom.coe_inf, TopologicalSpace.Opens.not_nonempty_iff_eq_bot, bot_le, CategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.ofComposableArrows_isoBot_hom, IntermediateField.fixingSubgroup_bot, symmDiff_bot, MeasureTheory.upcrossingsBefore_bot, Subalgebra.bot_eq_top_iff_rank_eq_one, isGalois_bot, Subalgebra.rTensorBot_tmul, iSup_extend_bot, sSupHomClass.toSupBotHomClass, Set.Iio_bot, iSup_bot, isGalois_iff_isGalois_bot, Fin.rev_bot, isMin_bot, Disjoint.eq_bot, boundary_Icc, AffineSubspace.bot_parallel_iff_eq_bot, FirstOrder.Language.Substructure.fg_bot, MvPolynomial.weightedTotalDegree_zero, CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.w₁_assoc, bihimp_bot, Set.Iic.coe_bot, SetLike.isAtom_iff, min_bot_right, Set.Ici_bot, IntermediateField.finrank_adjoin_simple_eq_one_iff, CompleteLattice.Ο‰ScottContinuous.bot, boundary_product, Nat.bot_eq_zero, Subalgebra.LinearDisjoint.eq_bot_of_self, sInf_eq_bot, inf_compl_eq_bot, separableClosure.eq_bot_iff, Subalgebra.LinearDisjoint.bot_left, Subalgebra.rank_bot, eq_bot_of_minimal, Coheyting.boundary_bot, Subalgebra.LinearDisjoint.bot_right, IntermediateField.rank_adjoin_simple_eq_one_iff, Concept.extent_bot, notMem_iff_exists_ne_and_isConjRoot, Ne.bot_lt, TopCat.Presheaf.isSheaf_iff_isTerminal_of_indiscrete, Order.bot_lt_succ, compl_bot, AlgebraicGeometry.IsClosedImmersion.isIso_iff_ker_eq_bot, Algebra.adjoin_empty, Subalgebra.fg_bot_toSubmodule, Algebra.botEquiv_symm_apply, MeasurableSpace.generateFrom_singleton_empty, NonUnitalStarAlgebra.toNonUnitalSubalgebra_bot, IccLeftChart_extend_bot_mem_frontier, BoundedOrderHom.map_bot', AffineSubspace.notMem_bot, bot_inf_eq, not_supPrime_bot, isLeast_univ, MeasureTheory.condExp_bot_ae_eq, exists_orderEmbedding_covby_of_forall_covby_finite_of_bot, Finset.Colex.ofColex_bot, Nucleus.bot_apply, DiscreteQuotient.proj_bot_injective, Seminorm.ball_bot, Subalgebra.bot_eq_top_of_rank_eq_one, RingCon.toCon_bot, Set.Intersecting.bot_notMem, CategoryTheory.Functor.WellOrderInductionData.Extension.zero_val, IsGalois.mem_bot_iff_fixed, Subalgebra.finrank_eq_one_iff, bot_notMem_iff, IntermediateField.map_bot, PrimeSpectrum.basicOpen_eq_bot_iff, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_bot, Finpartition.parts_inf, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot_of_isCompact, bot_eq_one, YoungDiagram.notMem_bot, bot_eq_zero', Finpartition.avoid_parts_val, separableClosure.eq_bot_of_isPurelyInseparable, Subalgebra.eq_bot_of_isPurelyInseparable_of_isSeparable, Subalgebra.finite_bot, IntermediateField.finSepDegree_bot, Pi.isAtom_single, AddGroupTopology.toTopologicalSpace_bot, IsGaloisGroup.fixedPoints_eq_bot, IsLowerSet.bot_notMem, Finset.truncatedInf_of_notMem, SSet.skeleton_zero
bridge: bot_eq_false

Theorems

NameKindAssumesProvesValidatesDepends On
bot_le πŸ“–mathematicalβ€”Bot.bot
toBot
β€”β€”
ext_bot πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Bot.bot
toBot
β€”PartialOrder.ext
bot_unique
bot_le
instSubsingleton πŸ“–mathematicalβ€”OrderBot
Preorder.toLE
PartialOrder.toPreorder
β€”le_antisymm

OrderDual

Definitions

NameCategoryTheorems
instBot πŸ“–CompOp
20 mathmath: InfTopHom.symm_dual_id, TopHom.symm_dual_id, ofDual_bot, InfTopHom.symm_dual_comp, InfTopHom.dual_id, TopHom.dual_symm_apply_apply, ofAdd_bot, InfTopHom.dual_comp, WithBot.toDualTopEquiv_symm_bot, toDual_top, InfTopHom.dual_apply_toFun, TopHom.symm_dual_comp, SemilatInfCat.dual_map, WithBot.toDualTopEquiv_bot, TopHom.dual_apply_apply, InfTopHom.dual_symm_apply_toFun, toDual_eq_bot, TopHom.dual_comp, ofDual_eq_top, TopHom.dual_id
instBoundedOrder πŸ“–CompOp
27 mathmath: isCompl_toDual_iff, isCompl_ofDual_iff, BoundedLatticeHom.dual_id, BoundedOrderHom.symm_dual_id, NonemptyInterval.dual_top, BoundedLatticeHom.symm_dual_comp, BoundedOrderHom.dual_apply_toOrderHom, BddOrd.dual_map, Interval.dual_top, BoundedOrderHom.dual_id, BoundedOrderHom.symm_dual_comp, BoundedLatticeHom.dual_symm_apply_toFun, isSimpleOrder_iff_isSimpleOrder_orderDual, BddDistLat.dual_map, BoundedLatticeHom.symm_dual_id, BoundedOrderHom.dual_comp, BoolAlg.dual_map, BoundedLatticeHom.dual_apply_toFun, BoundedOrderHom.dual_symm_apply_toOrderHom, BoundedLatticeHom.dual_comp, ComplementedLattice.instOrderDual, IsCompl.dual, IncidenceAlgebra.eulerChar_orderDual, FinBddDistLat.dual_map, FinBoolAlg.dual_map, BddLat.dual_map, instIsSimpleOrder
instOrderBot πŸ“–CompOp
12 mathmath: Codisjoint.dual, SemilatInfCat.dual_obj_isOrderBot, instIsAtomic, disjoint_toDual_iff, instIsAtomistic, isAtomistic_dual_iff_isCoatomistic, codisjoint_ofDual_iff, isAtom_dual_iff_isCoatom, Finset.toDual_inf, isAtomic_dual_iff_isCoatomic, IsCoatom.dual, Finset.ofDual_sup
instOrderTop πŸ“–CompOp
11 mathmath: isCoatomic_dual_iff_isAtomic, Disjoint.dual, Finset.ofDual_inf, instIsCoatomistic, disjoint_ofDual_iff, codisjoint_toDual_iff, IsAtom.dual, isCoatomistic_dual_iff_isAtomistic, Finset.toDual_sup, instIsCoatomic, isCoatom_dual_iff_isAtom
instTop πŸ“–CompOp
17 mathmath: SupBotHom.dual_comp, SupBotHom.symm_dual_comp, BotHom.dual_apply_apply, WithTop.toDualBotEquiv_symm_top, SemilatSupCat.dual_map, SupBotHom.dual_id, BotHom.dual_symm_apply_apply, SupBotHom.symm_dual_id, toDual_eq_top, BotHom.symm_dual_id, toDual_bot, BotHom.symm_dual_comp, BotHom.dual_comp, BotHom.dual_id, WithTop.toDualBotEquiv_top, ofDual_top, ofDual_eq_bot

Theorems

NameKindAssumesProvesValidatesDepends On
ofDual_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
Bot.bot
instBot
Top.top
β€”β€”
ofDual_eq_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
Bot.bot
Top.top
instTop
β€”β€”
ofDual_eq_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
Top.top
Bot.bot
instBot
β€”β€”
ofDual_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
ofDual
Top.top
instTop
Bot.bot
β€”β€”
toDual_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Bot.bot
Top.top
instTop
β€”β€”
toDual_eq_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Bot.bot
instBot
Top.top
β€”β€”
toDual_eq_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Top.top
instTop
Bot.bot
β€”β€”
toDual_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Top.top
Bot.bot
instBot
β€”β€”

OrderTop

Definitions

NameCategoryTheorems
toTop πŸ“–CompOp
1222 math, 1 bridgemath: AlgebraicGeometry.Scheme.toSpecΞ“_apply, AlgebraicGeometry.Scheme.Opens.ΞΉ_image_basicOpen, AlgebraicGeometry.Ξ“_map_morphismRestrict, AlgebraicGeometry.Scheme.Hom.smoothLocus_eq_top_iff, IsCyclotomicExtension.adjoin_primitive_root_eq_top, NonUnitalSubalgebra.center_eq_top, isMax_iff_eq_top, Nucleus.instTopHomClass, AlgebraicGeometry.Scheme.Ξ“SpecIso_inv_naturality_assoc, AlgebraicGeometry.Scheme.Hom.toPartialMap_hom, AlgebraicGeometry.Scheme.map_PrimeSpectrum_basicOpen_of_affine, IntermediateField.finInsepDegree_top, HahnEmbedding.IsPartial.baseEmbedding_le, SSet.Subcomplex.preimage_eq_top_iff, IsCoatom.ne_iff_eq_top, measurable_from_top, AlgebraicGeometry.IsAffineOpen.isoSpec_inv_appTop, ofDual_toAdd_zero, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo, LinearOrderedAddCommGroupWithTop.neg_eq_top, Finset.Icc_top, IntermediateField.adjoin_eq_top_iff_of_isAlgebraic, Heyting.isRegular_top, LinearOrderedAddCommGroupWithTop.sub_pos, IsTop.eq_top, IsCompl.sup_eq_top, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app, AlgebraicGeometry.Scheme.IsQuasiAffine.toIsImmersion, AlgebraicGeometry.StructureSheaf.globalSectionsIso_inv, isGreatest_univ, Set.Ioc_top, TopologicalSpace.Opens.mem_top, AlgebraicGeometry.iSup_affineOpens_eq_top, AlgebraicGeometry.isAffineOpen_top, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv, AlgebraicTopology.NormalizedMooreComplex.obj_d, MeasureTheory.Measure.sub_top, AlgebraicGeometry.Scheme.support_nilradical, BoundedOrderHomClass.map_top, FiniteArchimedeanClass.mem_addSubgroup_iff, Additive.ofMul_eq_top, InfTopHom.inf_apply, IsCofinal.singleton_top, Subalgebra.pi_top, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_presheaf_map_top, Finset.truncatedSup_union_of_notMem, AlgebraicGeometry.LocallyRingedSpace.notMem_prime_iff_unit_in_stalk, sSup_univ, AlgebraicGeometry.Scheme.restrictFunctorΞ“_inv_app, TopHom.symm_dual_id, Multiplicative.ofAdd_eq_top, AlgebraicGeometry.instIsDomainCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopOfIsIntegral, MeasureTheory.OuterMeasure.mkMetric_top, codisjoint_bot, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous_ne_zero, AffineBasis.tot, Algebra.mem_top, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, Filter.liminf_const_top, Finset.Colex.toColex_univ, AlgebraicGeometry.Scheme.fromSpecStalk_toSpecΞ“_assoc, AlgebraicGeometry.AffineSpace.SpecIso_hom_appTop, ArchimedeanClass.closedBallAddSubgroup_top, AlgebraicGeometry.Scheme.IdealSheafData.one_eq_top, IsOpen.exists_subset_affineIndependent_span_eq_top, SSet.iSup_subcomplexOfSimplex_prod_eq_top, isSimpleOrder_iff_isAtom_top, OrdinalApprox.gfp_mem_range_gfpApprox, AlgebraicGeometry.Scheme.zeroLocus_eq_univ_iff_subset_nilradical, AlgebraicGeometry.Scheme.Opens.topIso_inv, CategoryTheory.Sieve.mem_iff_pullback_eq_top, Finset.inf_eq_top_iff, HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk, iInf_of_empty, AddValuation.top_iff, inseparable_top, BoxIntegral.IntegrationParams.tendsto_embedBox_toFilteriUnion_top, TensorAlgebra.adjoin_range_ΞΉ, NonUnitalStarAlgebra.mem_top, IsCofinal.top_mem, AlgHom.equalizer_eq_top, iInf_false, AlgebraicGeometry.Scheme.Hom.id_appTop, CategoryTheory.Presheaf.imageSieve_app, iInf_eq_top, SetLike.isCoatom_iff, IsGaloisGroup.fixingSubgroup_top, AlgebraicGeometry.Scheme.ideal_ker_le_ker_Ξ“SpecIso_inv_comp, FiniteArchimedeanClass.mk_lt_mk, Algebra.toSubsemiring_eq_top, MeasureTheory.OuterMeasure.trim_top, RootPairing.invtRootSubmodule.eq_top_iff, IsLocalRing.closedPoint_mem_iff, AlgebraicGeometry.Scheme.isoSpec_inv_toSpecΞ“, QuotientAddGroup.leftRel_eq_top, Finset.Nonempty.sup_eq_top_iff, RingCon.matrix_top, SSet.Subcomplex.range_eq_top, AlgHom.fieldRange_eq_map, Field.exists_primitive_element, isGalois_iff_isGalois_top, AlgebraicGeometry.isIso_Ξ“Spec_adjunction_unit_app_basicOpen, List.foldr_inf_eq_inf_toFinset, AlgebraicGeometry.isNoetherian_iff_of_finite_affine_openCover, Coheyting.boundary_top, AlgebraicGeometry.Scheme.ΞΉ_toIso_inv, LTSeries.exists_relSeries_covBy_and_head_eq_bot_and_last_eq_bot, LowerSet.Iic_top, CategoryTheory.Subfunctor.range_toRange, UnitAddTorus.mFourierSubalgebra_closure_eq_top, eq_top_iff, Frm.Iso.mk_hom, BoxIntegral.Prepartition.top_boxes, Algebra.toSubring_eq_top, AddCon.toSetoid_top, LinearOrderedAddCommGroupWithTop.add_eq_top, NumberField.adjoin_eq_top_of_infinitePlace_lt, Polynomial.IsSplittingField.splits_iff, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_apply, SSet.Subcomplex.topIso_inv_app_coe, CategoryTheory.Subobject.top_arrow_isIso, polynomialFunctions.starClosure_topologicalClosure, Coheyting.hnot_boundary, AlgebraicGeometry.Scheme.IdealSheafData.equivOfIsAffine_symm_apply, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_ordinal, CategoryTheory.GrothendieckTopology.trivial_covering, hnot_symmDiff_self, AffineEquiv.span_eq_top_iff, AlgebraicGeometry.Scheme.SpecΞ“Identity_hom_app, AffineSubspace.direction_eq_top_iff_of_nonempty, Additive.ofMul_top, IsCompl.symmDiff_eq_top, SemilatInfCat_dual_comp_forget_to_partOrd, Set.Iio_top, add_top, induced_const, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top, isMax_top, BoxIntegral.HasIntegral.tendsto, integralClosure_eq_top_iff, OrderHom.top_def, interior_convexHull_nonempty_iff_affineSpan_eq_top, CompleteSublattice.top_mem, AlgebraicGeometry.Scheme.isoSpec_inv_preimage_zeroLocus, TopHom.coe_top, Coheyting.hnot_eq_top_iff_exists_boundary, TopologicalSpace.eq_top_iff_forall_inseparable, MulArchimedeanClass.top_eq_mk_iff, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app_assoc, AlgebraicGeometry.PresheafedSpace.Ξ“_obj_op, CategoryTheory.Subobject.map_top, IntermediateField.adjoin_univ, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΞ“_app, TopCat.GlueData.MkCore.V_id, AffineSubspace.linear_topEquiv, UniformSpace.toTopologicalSpace_top, HahnEmbedding.Partial.archimedeanClassMk_eq_iff, CategoryTheory.Subfunctor.Subpresheaf.preimage_eq_top_iff, not_lt_top_iff, symmDiff_top', lt_top_of_lt, CategoryTheory.Sieve.top_apply, ContinuousMap.concatCM_left, MulAction.BlockMem.coe_top, Algebra.EssFiniteType.adjoin_mem_finset, AlgebraicGeometry.Scheme.Hom.preimage_top, Polynomial.IsSplittingField.adjoin_rootSet, AlgebraicGeometry.Scheme.isoSpec_hom, AlgebraicGeometry.Scheme.ΞΉ_toIso_inv_assoc, NonemptyInterval.dual_top, HahnEmbedding.Seed.baseEmbedding_strictMono, AlgebraicGeometry.Proj.basicOpenToSpec_app_top, NonUnitalSubalgebra.prod_top, AlgebraicGeometry.Scheme.Hom.image_top_eq_opensRange, Ne.lt_top', FiniteArchimedeanClass.val_mk, MeasurableSpace.map_const, bot_covBy_top, NonUnitalStarAlgebra.coe_top, AlgebraicGeometry.Scheme.toSpecΞ“_naturality_assoc, Set.Icc_top, Sublocale.top_mem, AlgebraicGeometry.SurjectiveOnStalks.iff_of_isAffine, AlgebraicGeometry.SpecMap_Ξ“SpecIso_hom, Subalgebra.center_eq_top, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex, FiniteArchimedeanClass.mem_ballAddSubgroup_iff, SSet.iSup_skeleton, PrimeSpectrum.iSup_basicOpen_eq_top_iff, IsNormalClosure.adjoin_rootSet, AffineBasis.tot', himp_top, TopologicalSpace.Opens.isOpenEmbedding_obj_top, AlgebraicGeometry.LocallyRingedSpace.Ξ“_obj_op, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_appTop_coord, Fin.top_eq_last, UpperSet.Ioi_top, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over_assoc, TopHom.coe_inf, SSet.Subcomplex.eq_top_iff_of_hasDimensionLT, AlgebraicGeometry.Scheme.isoSpec_hom_naturality, BoxIntegral.IntegrationParams.eventually_isPartition, iInfβ‚‚_eq_top, AlgebraicGeometry.Scheme.toSpecΞ“_isoSpec_inv_assoc, disjoint_top, essInf_measure_zero, HahnEmbedding.Partial.toOrderAddMonoidHom_apply, Polynomial.SplittingFieldAux.adjoin_rootSet, RingCon.subsingleton_quotient, CategoryTheory.Sieve.generate_top, SSet.Subcomplex.topIso_inv_ΞΉ, AlgebraicGeometry.Scheme.toSpecΞ“_naturality, AlgebraicGeometry.Scheme.Hom.quasiFiniteLocus_eq_top, IntermediateField.fixingSubgroup_top, AffineSubspace.coe_eq_univ_iff, CategoryTheory.Sieve.equalizer_self, TopologicalSpace.Opens.mk_univ, top_bihimp, CategoryTheory.GrothendieckTopology.Plus.toPlus_eq_mk, AlgebraicGeometry.LocallyRingedSpace.Ξ“_Spec_left_triangle, inf_top_eq, LatticeHom.withTopWithBot'_toFun, Codisjoint.top_le, Finset.Ici_eq_Icc, AlgebraicGeometry.RingedSpace.mem_top_basicOpen, IsCoatom.sup_eq_top_of_ne, PMF.toOuterMeasure_caratheodory, not_top_lt, BoxIntegral.Prepartition.isPartitionTop, Filter.Eventually.lt_top_iff_ne_top, Fin.rev_top, IntermediateField.relfinrank_top_right, Order.succ_top, IndiscreteTopology.eq_top, Finset.Icc_bot_top, liminf_eq_top, FiniteMulArchimedeanClass.withTopOrderIso_apply_coe, Set.Ioi_top, AlgebraicGeometry.Scheme.Hom.toPartialMap_domain, CompleteLinearOrder.top_sdiff, HahnEmbedding.Partial.isWF_support_evalCoeff, Submodule.toConvexCone_top, HahnEmbedding.Partial.orderTop_eq_iff, AlgebraicGeometry.IsAffineOpen.isoSpec_inv, ArchimedeanClass.top_eq_mk_iff, AlgebraicGeometry.Scheme.Ξ“_obj, CategoryTheory.Presieve.isSheafFor_top_sieve, AlgebraicGeometry.isLocallyNoetherian_iff_of_affine_openCover, AlgebraicGeometry.Scheme.IdealSheafData.instIsEmptyCarrierCarrierCommRingCatSubschemeTop, SSet.hasDimensionLT_subcomplex_top_iff, IntermediateField.restrictScalars_top, nhds_top_basis_Ici, Fintype.IsSimpleOrder.univ, EuclideanGeometry.Sphere.orthRadius_center, Representation.invtSubmodule.coe_top, Finset.top_eq_univ, TopologicalSpace.isOpen_top_iff, AlgebraicGeometry.IsLocallyArtinian.isArtinianRing_of_isAffine, AlgebraicGeometry.StructureSheaf.toPushforwardStalkAlgHom_apply, AlgebraicGeometry.Scheme.preimage_basicOpen_top, Fin.top_eq_zero, MvPolynomial.adjoin_range_X, sup_top_eq, AlgebraicGeometry.Scheme.Ξ“SpecIso_inv, NonUnitalAlgebra.range_id, IntermediateField.mem_top, AlgebraicGeometry.Scheme.isoSpec_hom_naturality_assoc, AlgebraicGeometry.Scheme.isoSpec_inv_image_zeroLocus, Field.primitive_element_iff_algHom_eq_of_eval', codisjoint_iff, CategoryTheory.GrothendieckTopology.top_mem, TopHom.dual_symm_apply_apply, AlgebraicGeometry.Ξ“Spec.locallyRingedSpaceAdjunction_counit_app', Flag.top_mem, adjoin_eq_top_of_conductor_eq_top, AlgebraicGeometry.Scheme.Opens.ΞΉ_image_basicOpen_topIso_inv, BoxIntegral.IntegrationParams.hasBasis_toFilteriUnion_top, IntermediateField.relrank_top_right, AlgebraicGeometry.SpecMap_Ξ“SpecIso_inv_toSpecΞ“, AffineBasis.affineSpan_eq_top_of_toMatrix_left_inv, AlgebraicGeometry.Scheme.toSpecΞ“_preimage_zeroLocus, Finset.truncatedSup_empty, Algebra.coe_top, TopologicalSpace.Opens.inclusion'_top_functor, MeasureTheory.Measure.mkMetric_top, Set.instNonemptyTop, Set.Ici_top, SSet.Subcomplex.eq_top_iff_contains_nonDegenerate, max_top_right, AlgebraicGeometry.Scheme.fromSpecStalk_appTop, Subalgebra.unop_top, BoxIntegral.Prepartition.compl_top, ProperCone.innerDual_zero, Finpartition.top_isEquipartition, AlgebraicGeometry.PresheafedSpace.Ξ“_map_op, Order.Ideal.IsProper.top_notMem, ofAdd_bot, Order.pred_top_le_iff, BoxIntegral.Prepartition.biUnion_top, Finpartition.parts_top_subset, AlgebraicGeometry.Scheme.id_appTop, sSup_compact_eq_top, LinearOrderedAddCommGroupWithTop.sub_top, isGLB_empty, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_appTop_assoc, Codisjoint.eq_top_of_le, BoundedLatticeHom.coe_comp_lattice_hom', Convex.interior_nonempty_iff_affineSpan_eq_top, Polynomial.adjoin_rootSet_eq_range, CategoryTheory.Presheaf.equalizerSieve_self_eq_top, CategoryTheory.TransfiniteCompositionOfShape.iic_isColimit, HahnEmbedding.IsPartial.strictMono, Multiset.inf_zero, ClosedSubmodule.bot_orthogonal_eq_top, AlgebraicGeometry.Scheme.fromSpecStalk_toSpecΞ“, AlgebraicGeometry.Scheme.ker_toSpecΞ“, TopCat.Presheaf.map_germ_eq_Ξ“germ, Algebra.top_toSubmodule, SSet.Subcomplex.preimage_range, AlgebraicGeometry.Scheme.ker_of_isAffine, Subalgebra.fg_of_submodule_fg, AlgebraicGeometry.IsAffineOpen.algebraMap_Spec_obj, AlgebraicGeometry.isBasis_basicOpen, Filter.tendsto_atTop_pure, map_eq_top_iff, AlgebraicGeometry.Scheme.Ξ“evaluation_naturality_apply, FiniteMulArchimedeanClass.mem_ballSubgroup_iff, CliffordAlgebra.adjoin_range_ΞΉ, AlgebraicGeometry.Flat.flat_and_surjective_iff_faithfullyFlat_of_isAffine, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_SpecMap_presheaf_map_top_assoc, AlgebraicGeometry.LocallyRingedSpace.coe_toΞ“SpecSheafedSpace_hom_base_hom_apply_asIdeal, Codisjoint.eq_top_of_self, Polynomial.Splits.adjoin_rootSet_eq_range, ArchimedeanClass.ballAddSubgroup_top, Setoid.top_def, codisjoint_self, AlgebraicGeometry.isIntegral_appTop_of_universallyClosed, IntermediateField.lift_top, min_top_left, iSup_eq_top, Interval.dual_top, FiniteArchimedeanClass.liftOrderHom_mk, TopHom.sup_apply, List.min_le_of_le, AlgebraicGeometry.Ξ“Spec.adjunction_counit_app, isCoatomic_iff, AlgebraicGeometry.tilde.isoTop_hom, CategoryTheory.Subfunctor.range_eq_top, borel_eq_top_of_discrete, FiniteMulArchimedeanClass.mem_closedBallSubgroup_iff, ClosedSubmodule.top_orthogonal_eq_bot, le_top, CoheytingHomClass.map_top, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_appTop, HahnEmbedding.ArchimedeanStrata.archimedeanClassMk_of_mem_stratum, CategoryTheory.Subfunctor.Subpresheaf.image_top, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_stalkMap_toSpec_assoc, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous, AlgebraicGeometry.Ξ“_restrict_isLocalization, IntermediateField.restrictScalars_eq_top_iff, Set.Icc_bot_top, not_infPrime_top, HahnEmbedding.IsPartial.truncLT_mem_range, IsUpperSet.top_mem, Complementeds.coe_top, CategoryTheory.top_apply, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_stalkMap_toSpec, MeasureTheory.lpMeasToLpTrimLie_symm_indicator, AlgebraicGeometry.Ξ“SpecIso_obj_hom, LinearOrderedAddCommGroupWithTop.neg_pos, CategoryTheory.GrothendieckTopology.Cover.preOneHypercover_sieve₁, sup_hnot_self, Set.Ioc.coe_top, AlgebraicGeometry.Spec.germ_stalkMapIso_hom_assoc, AlgebraicGeometry.Scheme.Hom.preimage_basicOpen_top, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, IntermediateField.bot_eq_top_of_finrank_adjoin_eq_one, Setoid.mk_eq_top, MeasureTheory.OuterMeasure.comap_top, CategoryTheory.Sieve.overEquiv_top, ProbabilityTheory.iIndep_comap_mem_iff, Field.exists_primitive_element_of_finite_bot, CategoryTheory.GrothendieckTopology.close_eq_top_iff_mem, TopologicalSpace.Opens.functor_obj_map_obj, CategoryTheory.Sieve.arrows_eq_top_iff, AlgebraicGeometry.exists_appTop_Ο€_eq_of_isAffine_of_isLimit, Finset.Iic_top, CategoryTheory.Sieve.arrows_top, Frm.Iso.mk_inv, QuotientAddGroup.rightRel_eq_top, AlgebraicGeometry.Scheme.OpenCover.iSup_opensRange, IsCoatom.Ici_eq, AffineSubspace.mem_top, Algebra.bijective_algebraMap_iff, Subalgebra.topEquiv_apply, CategoryTheory.topologyOfClosureOperator_sieves, hnot_top, Field.exists_primitive_element_of_finite_top, CategoryTheory.Subobject.isIso_top_arrow, IntermediateField.adjoin_simple_eq_top_iff_of_isAlgebraic, continuous_top, AlgebraicGeometry.Scheme.Ξ“evaluation_naturality_assoc, essInf_const_top, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_ofIdealTop, LinearOrderedAddCommGroupWithTop.top_pos, himp_eq_top_iff, ArchimedeanClass.mk_zero, LatticeHom.withTop'_toFun, AlgebraicGeometry.Ξ“Spec.toOpen_comp_locallyRingedSpaceAdjunction_homEquiv_app, AddGroupTopology.toTopologicalSpace_top, top_inf_eq, AlgebraicGeometry.Scheme.Opens.toSpecΞ“_top, IntermediateField.rank_top, CompleteDistribLattice.top_sdiff, CategoryTheory.Sieve.generate_of_singleton_isSplitEpi, AlgebraicGeometry.AffineSpace.SpecIso_inv_appTop_coord, CategoryTheory.Sieve.functorPullback_top, max_eq_top, Finset.truncatedSup_singleton, AlgebraicGeometry.germ_stalkClosedPointIso_hom_assoc, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_top_iff, WithTop.pred_eq_top, NonUnitalAlgebra.top_toNonUnitalSubsemiring, Quotient.subsingleton_iff, IsUpperSet.top_notMem, PowerBasis.adjoin_gen_eq_top, BoundedLatticeHom.map_top', StarSubalgebra.eq_top_iff, Finset.Colex.ofColex_top, UpperSet.Ioi_eq_top, IntermediateField.adjoin_root_eq_top, codisjoint_iff_le_sup, FiniteMulArchimedeanClass.withTopOrderIso_symm_apply, FiniteArchimedeanClass.mem_closedBallAddSubgroup_iff, AffineSubspace.smul_top, ConvexCone.toPointedCone_top, OrderIsoClass.toTopHomClass, Order.pred_lt_top, iInf_ne_top_subtype, CategoryTheory.GrothendieckTopology.discrete_eq_top, TopCat.Presheaf.map_germ_eq_Ξ“germ_assoc, FiniteArchimedeanClass.mem_ball_iff, NonUnitalStarAlgebra.top_toNonUnitalSubalgebra, Set.addCentralizer_empty, CoheytingHom.map_top', Finset.Ioi_eq_Ioc, MeasureTheory.OuterMeasure.zero_caratheodory, Finset.fold_sup_univ, ConvexCone.mem_top, IsLprojection.coe_top, LinearOrderedAddCommGroupWithTop.add_lt_top, FiniteMulArchimedeanClass.liftOrderHom_mk, IsMax.eq_top, MeasureTheory.OuterMeasure.top_caratheodory, Multiset.inf_coe, AlgebraicGeometry.StructureSheaf.globalSectionsIso_hom, IntermediateField.finrank_top, Finset.sup_eq_top_iff, hnot_bot, WithTop.subtypeOrderIso_symm_apply, Multiplicative.toAdd_eq_top, NonUnitalStarAlgebra.range_eq_top, separableClosure.eq_top_iff, ProbabilityTheory.iIndepSet.iIndep_comap_mem, Algebra.top_toSubring, AlgebraicGeometry.Scheme.ker_eq_top_of_isEmpty, AlgebraicGeometry.Ξ“Spec.left_triangle, CategoryTheory.Subfunctor.eq_top_iff_isIso, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΞ“_app_assoc, AlgebraicGeometry.AffineSpace.comp_homOfVector, IntermediateField.top_toSubalgebra, IntermediateField.relrank_top_left, AddValuation.map_zero, AlgebraicGeometry.Scheme.instIsOpenImmersionToSpecΞ“OfIsQuasiAffine, AlgebraicGeometry.Scheme.homOfLE_appTop, SemilatInfCat.coe_forget_to_partOrd, GaloisConnection.u_eq_top, IsGaloisGroup.fixedPoints_bot, AlgebraicGeometry.Scheme.isoSpec_inv_naturality_assoc, AlgebraicGeometry.IsAffineOpen.fromSpec_app_self, nhds_top, AlgebraicGeometry.PresheafedSpace.restrictTopIso_hom, HahnEmbedding.Partial.eval_smul, IsCoatomic.eq_top_or_exists_le_coatom, exists_root_adjoin_eq_top_of_isCyclic, grade_top, AlgebraicGeometry.AffineSpace.hom_ext_iff, AlgebraicGeometry.Ξ“Spec.unop_locallyRingedSpaceAdjunction_counit_app', upperBounds_univ, isLUB_univ, FiniteArchimedeanClass.subsemigroup_eq_addSubgroup, AlgebraicGeometry.Scheme.isoSpec_Spec_hom, Filter.Eventually.ne_top_of_lt, sSup_atoms_eq_top, NonemptyInterval.coe_top_interval, IntermediateField.finrank_eq_one_iff_eq_top, SSet.Subcomplex.iSup_ofSimplex_nonDegenerate_eq_top, TopHom.inf_apply, AlgebraicGeometry.tilde.isIso_toOpen_top, SupHom.withTop'_toFun, codisjoint_top_left, lt_top_iff_ne_top, Subfield.extendScalars_top, AlgebraicGeometry.HasRingHomProperty.appTop, AffineSubspace.mk'_top, Algebra.zariskisMainProperty_iff_exists_saturation_eq_top, NumberField.is_primitive_element_of_infinitePlace_lt, StrictAnti.apply_eq_top_iff, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top, MonoidAlgebra.exists_finset_adjoin_eq_top, AlgebraicGeometry.Scheme.isNilpotent_iff_basicOpen_eq_bot, IntermediateField.bot_eq_top_of_rank_adjoin_eq_one, SeparationQuotient.inseparableSetoid_eq_top_iff, AlgebraicGeometry.Scheme.isPullback_toSpecΞ“_toSpecΞ“, AlgebraicGeometry.Scheme.IdealSheafData.mul_top, AlgebraicGeometry.Scheme.Ξ“SpecIso_naturality, Filter.OrderTop.atTop_eq, AlgebraicGeometry.Scheme.restrictFunctorΞ“_hom_app, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_snd, CategoryTheory.ObjectProperty.IsStrongGenerator.subobject_eq_top, PowerBasis.adjoin_eq_top_of_gen_mem_adjoin, NonUnitalAlgebra.eq_top_iff, AlgebraicGeometry.SheafedSpace.Ξ“_map, Polynomial.IsSplittingField.adjoin_rootSet', AlgebraicGeometry.germ_stalkClosedPointIso_hom, bddLat_dual_comp_forget_to_semilatSupCat, ProbabilityTheory.Kernel.iIndep_comap_mem_iff, AlgebraicGeometry.Scheme.toSpecΞ“_isoSpec_inv, AlgebraicGeometry.IsFinite.instHasAffinePropertyAndIsAffineFiniteCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopHomAppTop, BoxIntegral.Prepartition.iUnion_top, BoxIntegral.Prepartition.distortion_top, ProperCone.dual_zero, AlgebraicGeometry.IsAffineOpen.instIsAffineToSchemeBasicOpen, OrdinalApprox.gfpApprox_ord_eq_gfp, CategoryTheory.Coverage.eq_top_pullback, BoundedOrderHom.coe_comp_topHom, AlgebraicGeometry.Scheme.toIso_inv_ΞΉ_assoc, AlgebraicGeometry.SheafedSpace.restrictTopIso_inv, AlgebraicGeometry.Scheme.toSpecΞ“_appTop, Order.Ideal.top_toLowerSet, Order.Coframe.top_sdiff, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_bot_iff, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top', Order.krullDim_le_one_iff_of_boundedOrder, AlgHom.range_eq_top, CategoryTheory.Subfunctor.Subpresheaf.epi_iff_range_eq_top, NonUnitalAlgebra.mem_top, Set.top_eq_univ, NonUnitalStarAlgebra.toNonUnitalSubalgebra_eq_top, SSet.Subcomplex.image_top, isLUB_atoms_top, Set.Ici.coe_top, LinearOrderedAddCommGroupWithTop.neg_top, AffineSubspace.affineSpan_eq_top_iff_vectorSpan_eq_top_of_nonempty, MulArchimedeanClass.mk_one, Interval.coe_top, IsCoatom.lt_iff, AffineSubspace.topEquiv_symm_apply_coe, FrameHom.coe_toInfTopHom, AlgebraicGeometry.StructureSheaf.algebraMap_obj_top_bijective, Module.End.invtSubmodule.mk_eq_top_iff, TopologicalSpace.Opens.inclusion'_map_eq_top, InfHom.withTop'_toFun, Subalgebra.centralizer_eq_top_iff_subset, AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_self, AlgebraicGeometry.Scheme.Hom.ker_eq_top_iff_isEmpty, Set.Iic_top, MeasureTheory.Measure.add_top, Heyting.Regular.coe_top, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_naturality_apply, Algebra.top_toSubsemiring, AlgebraicGeometry.Scheme.IdealSheafData.map_top, IsLocalRing.PrimeSpectrum.asIdeal_top, PseudoEpimorphismClass.toTopHomClass, AlgebraicGeometry.Spec_zeroLocus_eq_zeroLocus, WithTop.orderPred_top, AlgebraicGeometry.Scheme.Opens.ΞΉ_appTop, IsCoatom.covBy_top, AffineMap.map_top_of_surjective, AlgebraicGeometry.Scheme.map_basicOpen, bddLat_dual_comp_forget_to_semilatInfCat, CategoryTheory.Subfunctor.Subpresheaf.top_obj, NonUnitalAlgebra.adjoin_univ, AlgebraicGeometry.isRetrocompact_basicOpen, Tropical.le_zero, Order.pred_top_lt_iff, AlgebraicGeometry.Scheme.isoSpec_inv_naturality, IntermediateField.bot_eq_top_iff_finrank_eq_one, FrameHom.map_sSup', AlgebraicGeometry.Scheme.Hom.quasiFiniteLocus_eq_top_iff, ArchimedeanClass.out_top, AlgebraicGeometry.instQuasiSeparatedToSpecΞ“OfQuasiSeparatedSpaceCarrierCarrierCommRingCat, CategoryTheory.Sieve.pullback_eq_top_of_mem, AlgebraicGeometry.Scheme.comp_appTop_assoc, AlgebraicGeometry.Proj.basicOpen_one, GaloisConnection.u_top, FiniteMulArchimedeanClass.mk_le_mk, AlgebraicGeometry.Scheme.IdealSheafData.ideal_top, Order.coheight_top, nhds_top_order, CompletelyDistribLattice.top_sdiff, isGreatest_top_iff, RestrictedProduct.isEmbedding_inclusion_top, Subalgebra.op_top, AlgebraicGeometry.Scheme.isoSpec_Spec, ArchimedeanClass.ball_top, CategoryTheory.Subfunctor.Subpresheaf.range_id, Order.isPredPrelimit_top, Order.PFilter.top_mem, FiniteArchimedeanClass.mk_le_mk, Field.exists_primitive_element_iff_finite_intermediateField, CategoryTheory.ExtremalEpi.subobject_eq_top, AlgebraicGeometry.IsClosedImmersion.hasAffineProperty, Field.Emb.Cardinal.filtration_apply, AlgebraicGeometry.Scheme.preimage_opensRange_toSpecΞ“, BoxIntegral.Prepartition.splitMany_empty, indiscreteTopology_iff, AlgebraicGeometry.Scheme.Spec.algebraMap_residueFieldIso_inv, Subalgebra.bot_eq_top_iff_finrank_eq_one, Order.height_top_eq_krullDim, AlgebraicGeometry.Scheme.eq_zeroLocus_of_isClosed_of_isAffine, AddMonoidAlgebra.exists_finset_adjoin_eq_top, AlgebraicGeometry.Scheme.Opens.ΞΉ_preimage_self, CategoryTheory.Subfunctor.instIsIsoFunctorTypeΞΉTop, AlgebraicGeometry.Scheme.toSpecΞ“_image_zeroLocus, AlgebraicGeometry.PresheafedSpace.ofRestrict_top_c, Ordinal.enum_succ_eq_top, IsLowerSet.top_mem, AlgebraicGeometry.toSpecΞ“_SpecMap_Ξ“SpecIso_inv_assoc, AlgebraicGeometry.SheafedSpace.Ξ“_obj_op, Algebra.isAlgebraic_iff, TopologicalSpace.Closeds.coe_top, AlgebraicGeometry.IsAffineOpen.fromSpec_app_self_apply, NonUnitalStarAlgebra.comap_top, CategoryTheory.Dial.tensorUnit_rel, bot_codisjoint, FreeAlgebra.adjoin_range_ΞΉ, ContinuousMap.subalgebra_topologicalClosure_eq_top_of_separatesPoints, max_top_left, WithTop.pred_top, min_top_right, ClosedSubmodule.orthogonal_eq_top_iff, FiniteMulArchimedeanClass.mem_subgroup_iff, SSet.Subcomplex.topIso_inv_ΞΉ_assoc, AlgebraicGeometry.Scheme.inv_appTop, IntermediateField.finrank_top', AlgebraicGeometry.isLocalization_away_of_isAffine, CategoryTheory.SemilatticeInf.tensorUnit, AlgebraicGeometry.IsAffineOpen.ΞΉ_basicOpen_preimage, AffineSubspace.direction_top, Affine.Simplex.span_eq_top, IsSimpleOrder.equivBool_symm_apply, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal, IccRightChart_extend_top_mem_frontier, WithBot.sInf_empty, TopologicalSpace.Opens.eq_bot_or_top, AlgebraicGeometry.morphismRestrict_appTop, isSimpleOrder_iff, IsLocalRing.closed_point_mem_iff, AlgebraicGeometry.Scheme.IdealSheafData.ofIdealTop_ideal, Algebra.IsAlgebraic.isNormalClosure_iff, iInf_top, AlgebraicGeometry.Scheme.Hom.preimage_opensRange, StarSubalgebra.toSubalgebra_eq_top, AlgebraicGeometry.Ξ“SpecIso_hom_stalkClosedPointIso_inv, List.le_min_of_forall_le, StarSubalgebra.mem_top, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_apply, CategoryTheory.GrothendieckTopology.bot_covering, AlgebraicGeometry.LocallyRingedSpace.Ξ“_map, Finset.max_eq_top, AlgebraicGeometry.isCompactOpen_iff_eq_basicOpen_union, covBy_top_iff, exists_subset_affineIndependent_affineSpan_eq_top, AlgebraicGeometry.Spec.algebraMap_stalkIso_inv, FiniteMulArchimedeanClass.congrOrderIso_symm, SemilatInfCat.Iso.mk_inv_toFun, Additive.toMul_top, bot_lt_top, Algebra.adjoin_adjoin_coe_preimage, AlgebraicGeometry.eq_top_of_sigmaSpec_subset_of_isCompact, Algebra.adjoin_top, FrameHomClass.toInfTopHomClass, bihimp_self, HahnEmbedding.ArchimedeanStrata.isInternal_stratum', AlgebraicGeometry.PresheafedSpace.Ξ“_obj, IsLocalRing.Ring.KrullDimLE.eq_bot_or_eq_top, AffineSubspace.perpBisector_eq_top, MeasureTheory.condExpIndL1Fin_disjoint_union, Algebra.adjoin_root_eq_top_of_isSplittingField, not_isMin_top, AlgebraicGeometry.PresheafedSpace.toRestrictTop_c, Algebra.surjective_algebraMap_iff, AlgebraicGeometry.Scheme.isoSpec_inv_toSpecΞ“_assoc, TopHom.coe_sup, IsCoatom.le_iff, Field.primitive_element_iff_minpoly_degree_eq, FiniteMulArchimedeanClass.min_le_mk_mul, Algebra.toSubmodule_eq_top, AlgHom.fieldRange_eq_top, Ne.lt_top, Finset.inf_empty, DualNumber.range_inlAlgHom_sup_adjoin_eps, AlgebraicGeometry.Scheme.toOpen_eq, isPurelyInseparable_iff_perfectClosure_eq_top, Fin.cast_top, top_disjoint, BoundedLatticeHomClass.map_top, HahnEmbedding.Partial.orderTop_eq_finiteArchimedeanClassMk, bot_himp, inf_eq_top_iff, Algebra.adjoin_univ, AlgHom.equalizer_same, CategoryTheory.Subobject.mk_eq_top_of_isIso, CategoryTheory.Subfunctor.image_top, PUnit.top_eq, TopologicalSpace.Closeds.coe_eq_univ, hahnEmbedding_isOrderedModule_rat, FiniteArchimedeanClass.congrOrderIso_symm, AffineIndependent.affineSpan_eq_top_iff_card_eq_finrank_add_one, IntermediateField.adjoin_root_eq_top_of_isSplittingField, AlgebraicGeometry.Ξ“SpecIso_inv_Ξ“Spec_adjunction_homEquiv, TopHom.top_apply, algebraicClosure.eq_top_iff, AddAction.BlockMem.coe_top, IsOpen.exists_between_affineIndependent_span_eq_top, Setoid.eq_top_iff, AffineSubspace.top_coe, AlgebraicGeometry.toSpecΞ“_SpecMap_Ξ“SpecIso_inv, ClosureOperator.closure_top, Field.primitive_element_iff_minpoly_natDegree_eq, sInfHom.coe_top, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΞ“UnitOpensCarrierCarrierCommRingCatRingCatSheaf, Subalgebra.fg_top, le_top, NonUnitalAlgebra.toSubmodule_eq_top, CategoryTheory.Subobject.top_eq_id, AlgebraicGeometry.Scheme.Hom.inv_appTop, SSet.iSup_skeletonOfMono, affineSpan_coe_preimage_eq_top, AffineSubspace.pointwise_vadd_top, Complementeds.mk_top, TwoSidedIdeal.top_ringCon, AffineSubspace.perpBisector_self, codisjoint_top_right, HahnEmbedding.Seed.truncLT_mem_range_baseEmbedding, GaloisConnection.u_l_top, AlgebraicGeometry.Spec_zeroLocus, ProperCone.innerDual_empty, AlgebraicGeometry.Scheme.Ξ“SpecIso_inv_naturality, IntermediateField.topEquiv_symm_apply_coe, top_sup_eq, affineSpan_eq_top_of_nonempty_interior, OrderIso.map_top, TopHom.symm_dual_comp, FiniteArchimedeanClass.withTopOrderIso_symm_apply, CategoryTheory.Limits.equalizerSubobject_of_self, SSet.iSup_range_eq_top_of_isColimit, IntermediateField.rank_top', Subalgebra.topEquiv_symm_apply_coe, HahnEmbedding.Partial.mem_domain, AlgebraicGeometry.Scheme.SpecΞ“Identity_inv_app, MeasureTheory.OuterMeasure.boundedBy_top, AlgebraicGeometry.Scheme.Pullback.diagonalCoverDiagonalRange_eq_top_of_injective, iInf_eq_dif, ofDual_toAdd_eq_top_iff, CompleteSublattice.coe_top, IntermediateField.topEquiv_apply, MulArchimedeanClass.out_top, HahnEmbedding.Seed.mem_domain_baseEmbedding, CategoryTheory.Subobject.top_factors, AlgebraicGeometry.basicOpen_eq_of_affine', LowerAdjoint.closure_top, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom_appTop, AffineSubspace.topEquiv_apply, AlgebraicGeometry.instIsDominantToSpecΞ“OfCompactSpaceCarrierCarrierCommRingCat, AlgebraicGeometry.Scheme.preimage_eq_top_of_closedPoint_mem, iInf_extend_top, IsCyclotomicExtension.singleton_one, MeasureTheory.hittingBtwn_eq_sInf, InfTopHom.coe_top, SSet.finite_subcomplex_top_iff, CategoryTheory.Subobject.eq_top_of_isIso_arrow, AlgebraicGeometry.Scheme.isoSpec_Spec_inv, Algebra.adjoin_restrictScalars, top_add, NonUnitalAlgebra.coe_top, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.top_mem_range, QuotientGroup.rightRel_eq_top, NonUnitalAlgebra.map_top, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo_assoc, AlgebraicGeometry.Scheme.topIso_hom, SemilatInfCat.dual_map, MeasurableSpace.generateFrom_singleton, AlgebraicGeometry.finite_appTop_of_universallyClosed, AffineSubspace.span_univ, IntermediateField.top_toSubfield, TopologicalSpace.IsOpenCover.iSup_eq_top, LinearOrderedAddCommMonoidWithTop.top_add', NonUnitalAlgebra.to_subring_eq_top, eq_top_of_bot_isCompl, RingOfIntegers.exponent_eq_one_iff, Codisjoint.out, sSup_eq_top, BoxIntegral.integrable_iff_cauchy, AlgebraicGeometry.specTargetImageFactorization_app_injective, MulArchimedeanClass.ballSubgroup_top, Algebra.comap_top, Finset.inf_erase_top, CategoryTheory.Subobject.underlyingIso_inv_top_arrow_assoc, AlgebraicGeometry.PresheafedSpace.Ξ“_map, NonUnitalAlgebra.toNonUnitalSubring_eq_top, top_le_iff, FiniteArchimedeanClass.addSubgroup_strictAnti, AlgebraicGeometry.StructureSheaf.toOpenβ‚—_top_bijective, CategoryTheory.Subobject.isIso_arrow_iff_eq_top, Codisjoint.eq_iff, ClosedSubmodule.mem_top, TopHom.dual_apply_apply, CategoryTheory.Sieve.functorInclusion_top_isIso, CompleteBooleanAlgebra.top_le_sup_compl, AffineBasis.isUnit_toMatrix_iff, FiniteMulArchimedeanClass.ballSubgroup_strictAnti, Set.exists_seq_iSup_eq_top_iff_countable, Fin.rev_zero_eq_top, AlgebraicGeometry.AffineSpace.isoOfIsAffine_hom, Order.not_isPredLimit_top, sInfHomClass.toInfTopHomClass, AffineSubspace.instNonemptySubtypeMemTop, AlgebraicGeometry.affineAnd_apply, Concept.intent_top, IntermediateField.fg_top, isTop_iff_eq_top, instDiscreteMeasurableSpace, MeasureTheory.OuterMeasure.top_apply', AlgebraicGeometry.AffineSpace.reindex_appTop_coord, AlgebraicGeometry.Spec.algebraMap_stalkIso_inv_assoc, List.foldr_min_of_ne_nil, IsCyclotomicExtension.iff_adjoin_eq_top, CategoryTheory.Subobject.underlyingIso_inv_top_arrow, SemilatInfCat.Iso.mk_hom_toFun, AlgEquiv.fieldRange_eq_top, Field.Emb.Cardinal.iSup_adjoin_eq_top, AlgebraicGeometry.Ξ“Spec.toSpecΞ“_of, FiniteArchimedeanClass.coe_congrOrderIso_apply, DiscreteQuotient.instSubsingletonQuotientTop, symmDiff_hnot_self, Finset.Ioi_top, sInf_diff_singleton_top, top_mem_upperBounds, tendsto_atTop_nhds, Set.centralizer_empty, AlgebraicGeometry.exists_appTop_Ο€_eq_of_isLimit, CategoryTheory.Subobject.underlyingIso_top_hom, StrictMono.apply_eq_top_iff, AlgebraicGeometry.IsAffine.affine, StarSubalgebra.coe_top, AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.to_basicOpen, AlgebraicGeometry.SheafedSpace.Ξ“_obj, ProperCone.dual_empty, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_top, ArchimedeanClass.mk_eq_top_iff, AlgebraicGeometry.Scheme.mem_basicOpen_top, sdiff_top, ConvexCone.isGenerating_top, AlgebraicTopology.NormalizedMooreComplex.objX_zero, Set.Iic.coe_top, WellFoundedGT.induction_top, AlgebraicGeometry.Scheme.Opens.ΞΉ_image_basicOpen', AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_naturality_assoc, FiniteMulArchimedeanClass.subgroup_eq_bot, Algebra.eq_top_iff, Filter.liminf_bot, AffineSubspace.comap_top, fourierSubalgebra_closure_eq_top, top_notMem_iff, himp_self, Filter.limsInf_bot, AlgebraicGeometry.AffineSpace.homOverEquiv_apply, NonUnitalStarAlgebra.range_id, Subalgebra.prod_top, CategoryTheory.Sieve.overEquiv_symm_top, MulArchimedeanClass.closedBallSubgroup_top, NonUnitalAlgebra.comap_top, MeasureTheory.Measure.toOuterMeasure_top, hnot_sup_self, NonUnitalStarAlgebra.map_top, AlgebraicGeometry.Scheme.comp_appTop, AlgebraicGeometry.IsClosedImmersion.isAffine_surjective_of_isAffine, CategoryTheory.sieve₁'_toPreOneHypercover_eq_top, subalgebra_top_finrank_eq_submodule_top_finrank, IntermediateField.adjoin_eq_top_iff, Fin.range_natAdd_eq_Ioi, BoxIntegral.Prepartition.split_of_notMem_Ioo, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, AlgebraicGeometry.Scheme.fromSpecStalk_app, MulArchimedeanClass.mk_eq_top_iff, WithTop.subtypeOrderIso_apply_coe, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_comp, Algebra.IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, CategoryTheory.Subobject.pullback_top, AlgebraicGeometry.isField_of_universallyClosed, polynomialFunctions.topologicalClosure, sInf_empty, RingCon.range_mkₐ, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_eq_zero_iff_notMem_basicOpen, HahnSeries.finiteArchimedeanClassOrderIsoLex_apply_fst, ContinuousMap.concatCM_right, FiniteArchimedeanClass.ballAddSubgroup_strictAnti, AlgebraicGeometry.Scheme.Spec.algebraMap_residueFieldIso_inv_assoc, compl_top, IsSimpleOrder.lt_top_iff_eq_bot, MeasurableSpace.map_top, CategoryTheory.Subobject.epi_iff_mk_eq_top, RootPairing.coe_top, Algebra.map_top, Concept.extent_top, CategoryTheory.Subfunctor.top_obj, AlgebraicGeometry.Scheme.Hom.smoothLocus_eq_top, FiniteArchimedeanClass.submodule_strictAnti, CategoryTheory.Sieve.functorPushforward_top, NonUnitalStarSubalgebra.center_eq_top, AlgebraicGeometry.IsAffineOpen.fromSpec_top, IntermediateField.bot_eq_top_of_finrank_adjoin_le_one, CategoryTheory.Presieve.isSeparatedFor_top, BoundedOrderHomClass.toTopHomClass, AlgebraicGeometry.Scheme.IdealSheafData.support_top, CategoryTheory.Subobject.isIso_iff_mk_eq_top, AlgebraicGeometry.Scheme.map_basicOpen_map, ClosedSubmodule.coe_top, CompleteLattice.Ο‰ScottContinuous.top, CategoryTheory.Subobject.pullback_self, BoundedLatticeHom.coe_toInfTopHom, StarAlgHom.range_eq_map_top, AlgebraicGeometry.Scheme.Hom.comp_appTop, NonUnitalStarAlgebra.eq_top_iff, Subalgebra.bot_eq_top_of_finrank_eq_one, AlgebraicGeometry.IsIntegralHom.hasAffineProperty, AddValuation.mem_supp_iff, RingCon.toCon_eq_top, AlgebraicGeometry.Scheme.germ_stalkClosedPointTo_Spec, MeasureTheory.OuterMeasure.map_top_of_surjective, isAtom_iff_eq_top, Finpartition.parts_top_subsingleton, FiniteMulArchimedeanClass.subsemigroup_eq_subgroup, isCompl_bot_top, AlgebraicGeometry.Scheme.IdealSheafData.top_mul, AlgebraicGeometry.instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop, MvPolynomial.supported_univ, conductor_eq_top_iff_adjoin_eq_top, Codisjoint.eq_top_of_ge, fixedPoints.gfp_eq_sInf_iterate, BddLat.coe_forget_to_semilatInf, IsMaxChain.top_mem, isAtom_top, ArchimedeanClass.eq_zero_or_top_of_archimedean, AdjoinRoot.adjoinRoot_eq_top, AlgebraicGeometry.Scheme.IsLocallyDirected.V_self, Nucleus.coe_top, borel_eq_top_of_countable, CategoryTheory.GrothendieckTopology.top_mem', TopCat.Presheaf.Ξ“germ_res_apply, IntermediateField.extendScalars_top, subsingleton_iff_bot_eq_top, ConvexCone.coe_top, MeasurableSpace.measurableSet_top, CategoryTheory.Presheaf.equalizerSieve_eq_top_iff, IntermediateField.fixedField_bot, NonUnitalAlgebra.range_eq_top, IsCoatom.lt_top, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_ne_zero_iff_mem_basicOpen, AlgebraicGeometry.basicOpen_eq_of_affine, AlgebraicGeometry.LocallyRingedSpace.Ξ“_map_op, FiniteMulArchimedeanClass.val_mk, FiniteArchimedeanClass.ball_strictAnti, FrameHom.toFun_eq_coe, ArchimedeanClass.orderHom_top, AlgebraicGeometry.Scheme.Ξ“SpecIso_naturality_assoc, top_himp, LT.lt.lt_top, AlgebraicGeometry.IsAffineOpen.fromSpec_toSpecΞ“_assoc, Complex.adjoin_I, HahnEmbedding.Partial.eval_zero, SSet.Subcomplex.range_eq_top_iff, Con.toSetoid_top, AlgebraicGeometry.PresheafedSpace.toRestrictTop_base, AlgebraicGeometry.LocallyRingedSpace.isUnit_res_toΞ“SpecMapBasicOpen, AlgebraicGeometry.Ξ“Spec_adjunction_homEquiv_eq, ContinuousMap.elemental_id_eq_top, HahnSeries.finiteArchimedeanClassOrderIso_apply, MeasureTheory.OuterMeasure.map_top, Algebra.FiniteType.out, subsingleton_iff_top_eq_bot, polynomialFunctions_closure_eq_top', AffineSubspace.affineSpan_eq_top_iff_vectorSpan_eq_top_of_nontrivial, Projectivization.Subspace.span_univ, AlgebraicGeometry.Scheme.toIso_inv_ΞΉ, WithTop.coe_top_lt, IsSimpleOrder.eq_top_of_lt, FiniteArchimedeanClass.min_le_mk_add, TopHom.dual_comp, ClosedSubmodule.toSubmodule_top, OpenSubgroup.toOpens_top, eq_top_of_isCompl_bot, iInf_eq_if, TopologicalSpace.Opens.map_top, CategoryTheory.Functor.imageSieve_map, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_preimage_zeroLocus_eq, AlgebraicGeometry.LocallyRingedSpace.SpecΞ“Identity_hom_app, CategoryTheory.Sieve.pullback_top, Set.not_top_subset, IntermediateField.insepDegree_top, FiniteMulArchimedeanClass.mk_lt_mk, ProjectiveSpectrum.basicOpen_one, BoundedLatticeHom.coe_comp_inf_hom', AlgebraicGeometry.Scheme.Ξ“evaluation_naturality, RingCon.coe_top, OpenAddSubgroup.toOpens_top, AlgebraicGeometry.Scheme.IdealSheafData.ker_glueDataObjΞΉ_appTop, CategoryTheory.Sieve.uliftFunctorInclusion_top_isIso, AlgebraicGeometry.Spec.germ_stalkMapIso_hom, nhds_top_basis, NonUnitalStarSubalgebra.prod_top, ext_top, Finset.inf_top, LinearOrderedAddCommGroupWithTop.top_add', Sum.Lex.inr_top, AlgebraicGeometry.Spec.fromSpecStalk_eq, NonUnitalAlgebra.top_toSubring, ContinuousMapZero.elemental_eq_top, AlgebraicGeometry.AffineSpace.isoOfIsAffine_inv_over, SemilatSupCat_dual_comp_forget_to_partOrd, IntermediateField.fg_top_iff, CategoryTheory.GrothendieckTopology.top_covers, CategoryTheory.Presieve.factorsThru_top, AlgebraicGeometry.LocallyRingedSpace.Ξ“evaluation_naturality, AlgebraicGeometry.Proj.iSup_basicOpen_eq_top, AlgebraicGeometry.IsAffineOpen.fromSpec_preimage_basicOpen', induced_top, AlgebraicGeometry.Scheme.IdealSheafData.support_bot, AlgebraicGeometry.Scheme.Hom.opensRange_of_isIso, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecMapBasicOpen_eq, IntermediateField.relfinrank_top_left, AlgebraicGeometry.Scheme.Opens.instIsIsoCommRingCatAppLEΞΉTopToScheme, BoundedLatticeHom.coe_comp_inf_hom, sInf_eq_top, iInf_neg, AlgebraicGeometry.IsAffineOpen.Ξ“SpecIso_hom_fromSpec_app, Finset.truncatedSup_infs_of_notMem, GroupTopology.toTopologicalSpace_top, Fin.val_top, iInf_lt_top, Con.toSetoid_eq_top, MeasureTheory.OuterMeasure.dirac_caratheodory, IntermediateField.finSepDegree_top, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.largerSubobject_top, SSet.N.iSup_subcomplex_eq_top, Nucleus.top_apply, IsOpen.affineSpan_eq_top, CategoryTheory.Sieve.id_mem_iff_eq_top, AlgebraicGeometry.instQuasiCompactToSpecΞ“OfCompactSpaceCarrierCarrierCommRingCat, IsAdjoinRoot.primitive_element_root, Set.Icc.coe_top, AlgebraicGeometry.AffineSpace.comp_homOfVector_assoc, Order.IsPredLimit.lt_top, AlgebraicGeometry.Scheme.Opens.ΞΉ_image_top, BoundedLatticeHomClass.toInfTopHomClass, isCompl_top_bot, Field.Emb.Cardinal.adjoin_basis_eq_top, NonUnitalAlgebra.top_toSubmodule, Algebra.TensorProduct.adjoin_tmul_eq_top, AlgebraicGeometry.Scheme.Ξ“_obj_op, ContinuousMap.starSubalgebra_topologicalClosure_eq_top_of_separatesPoints, BiheytingAlgebra.top_sdiff, SSet.Subcomplex.topIso_hom, CategoryTheory.Sieve.pullback_ofObjects_eq_top, HahnEmbedding.Partial.exists_domain_eq_top, AlgebraicGeometry.HasRingHomProperty.iff_of_source_openCover, FiniteMulArchimedeanClass.subgroup_strictAnti, AlgebraicGeometry.Scheme.IdealSheafData.radical_top, AlgebraicGeometry.Scheme.Opens.topIso_hom, MeasureTheory.OuterMeasure.top_apply, Order.Ideal.coe_top, CategoryTheory.presheafIsGeneratedBy_of_isFinite, IsSimpleOrder.bot_lt_iff_eq_top, Subalgebra.restrictScalars_top, QuotientGroup.leftRel_eq_top, PrimeSpectrum.basicOpen_one, AlgebraicGeometry.Scheme.Hom.comp_appTop_assoc, AlgebraicGeometry.IsAffineOpen.fromSpec_app_of_le, MeasureTheory.Measure.top_add, AlgebraicGeometry.AffineSpace.map_appTop_coord, top_symmDiff', AlgebraicGeometry.Scheme.toSpecΞ“_preimage_basicOpen, isCofinal_iff_top_mem, PrimeSpectrum.iSup_basicOpen_eq_top_iff', Filter.bliminf_false, MeasureTheory.hitting_eq_sInf, AlgebraicGeometry.isIso_fromTildeΞ“_iff, top_sdiff', InfTopHom.coe_inf, AlgebraicGeometry.PresheafedSpace.restrictTopIso_inv, polynomialFunctions_closure_eq_top, AlgebraicGeometry.Scheme.openCoverBasicOpenTop_f, IsSimpleOrder.eq_bot_or_eq_top, IsDedekindDomain.integer_univ, InfTopHom.top_apply, bihimp_top, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecSheafedSpace_hom_c_app, LT.lt.eq_top, AlgebraicGeometry.Scheme.IdealSheafData.comap_top, IsAdjoinRoot.adjoin_root_eq_top, NonUnitalAlgebra.toNonUnitalSubring_top, iInf_emptyset, AlgebraicGeometry.isField_of_isIntegral_of_subsingleton, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app, CategoryTheory.PreOneHypercover.sieveβ‚€_trivial, CategoryTheory.Subfunctor.preimage_eq_top_iff, CategoryTheory.Subfunctor.Subpresheaf.eq_top_iff_isIso, iSupβ‚‚_eq_top, CategoryTheory.Dial.tensorUnitImpl_rel, ofAdd_toDual_eq_zero_iff, Finset.Ioc_top, CategoryTheory.Presieve.isSheafFor_top, Order.succ_le_iff_eq_top, AlgebraicGeometry.IsAffineOpen.fromSpec_toSpecΞ“, Subalgebra.bot_eq_top_iff_rank_eq_one, IntermediateField.coe_top, FiniteArchimedeanClass.addSubgroup_eq_bot, AlgebraicGeometry.AffineSpace.homOfVector_appTop_coord, min_eq_top, AlgebraicGeometry.Scheme.IsQuasiAffine.isBasis_basicOpen, HahnEmbedding.Partial.exists_isMax, Fin.zero_eq_top, eq_top_or_lt_top, AlgebraicGeometry.Scheme.isoSpec_image_zeroLocus, IccRightChart_extend_top, Algebra.range_id, Polynomial.SplittingField.adjoin_rootSet, AlgebraicGeometry.isCompact_and_isOpen_iff_finite_and_eq_biUnion_basicOpen, isSplittingField_iff_intermediateField, AlgebraicGeometry.PresheafedSpace.restrict_top_presheaf, Finset.truncatedSup_of_notMem, Fin.rev_bot, ClosureOperator.isClosed_top, NonemptyInterval.coe_top, boundary_Icc, TrivSqZeroExt.range_inlAlgHom_sup_adjoin_range_inr, Polynomial.adjoin_X, bihimp_eq_top, TopologicalSpace.Opens.coe_top, CategoryTheory.Subfunctor.epi_iff_range_eq_top, CategoryTheory.PreOneHypercover.sieve₁_trivial, StarSubalgebra.top_toSubalgebra, BoxIntegral.Prepartition.mem_top, BoundedOrderHom.map_top', IsSimpleOrder.equivBool_apply, CategoryTheory.Subfunctor.Subpresheaf.range_eq_top, AlgebraicGeometry.LocallyRingedSpace.toΞ“Spec_preimage_basicOpen_eq, boundary_product, instIndiscreteTopology, OrderIsoClass.toInfTopHomClass, NonUnitalAlgebra.toNonUnitalSubsemiring_eq_top, TopologicalSpace.Opens.coe_eq_univ, HahnEmbedding.Seed.domain_baseEmbedding, Field.primitive_element_iff_algHom_eq_of_eval, Set.setOf_top, AlgebraicGeometry.IsAffineOpen.isoSpec_hom_appTop, Additive.toMul_eq_top, FiniteArchimedeanClass.withTopOrderIso_apply_coe, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΞ“FreeOpensCarrierCarrierCommRingCat, CategoryTheory.Subfunctor.range_id, FiniteMulArchimedeanClass.coe_congrOrderIso_apply, separableClosure.adjoin_eq_of_isAlgebraic_of_isSeparable, AddCon.toSetoid_eq_top, Set.Iic.eq_top_iff, AlgebraicGeometry.instIsAffineHomΞΉBasicOpen, Codisjoint.eq_top, compl_bot, Finset.Ici_top, not_infIrred_top, Icc_isBoundaryPoint_top, FiniteArchimedeanClass.mem_closedBall_iff, CategoryTheory.Sieve.generate_of_contains_isSplitEpi, Subalgebra.rank_top, AlgebraicGeometry.HasRingHomProperty.iff_of_isAffine, Subalgebra.bot_eq_top_of_rank_eq_one, MulArchimedeanClass.orderHom_top, sInfHom.top_apply, ArchimedeanClass.closedBall_top, CategoryTheory.Subfunctor.Subpresheaf.range_toRange, AlgebraicGeometry.SheafedSpace.restrictTopIso_hom, AlgebraicGeometry.Ξ“Spec.toSpecΞ“_unop, MeasureTheory.OuterMeasure.toMeasure_top, hahnEmbedding_isOrderedAddMonoid, Prop.top_eq_true, Multiplicative.toAdd_top, subalgebra_top_rank_eq_submodule_top_rank, isComplemented_top, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_bot, AlgebraicGeometry.SheafedSpace.Ξ“_map_op, TopHom.dual_id, RingCon.toCon_top, Multiplicative.ofAdd_top, isCyclic_tfae, isTop_top, affineSpan_eq_top_iff_nonempty_of_subsingleton, AlgebraicGeometry.SpecMap_Ξ“SpecIso_inv_toSpecΞ“_assoc, GaloisInsertion.l_top, CategoryTheory.GrothendieckTopology.top_covering, Filter.limsSup_top, hahnEmbedding_isOrderedModule, Fin.succ_top, AlgebraicGeometry.LocallyRingedSpace.Ξ“_obj, CoheytingAlgebra.top_sdiff, AlgebraicGeometry.Scheme.Spec_fromSpecStalk, IntermediateField.sepDegree_top, IsAntichain.top_mem_iff, Order.Ideal.principal_top, CategoryTheory.Limits.kernelSubobject_zero, AlgebraicGeometry.Scheme.toSpecΞ“_base, HahnEmbedding.Partial.toOrderAddMonoidHom_injective
bridge: top_eq_true

Theorems

NameKindAssumesProvesValidatesDepends On
ext_top πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Top.top
toTop
β€”PartialOrder.ext
top_unique
le_top
instSubsingleton πŸ“–mathematicalβ€”OrderTop
Preorder.toLE
PartialOrder.toPreorder
β€”ge_antisymm
le_top πŸ“–mathematicalβ€”Top.top
toTop
β€”β€”

Pi

Definitions

NameCategoryTheorems
instBotForall πŸ“–CompOp
39 mathmath: CategoryTheory.isCoseparating_empty_of_thin, CategoryTheory.isCodetecting_empty_of_groupoid, LinearGrowth.linearGrowthInf_bot, SupHom.coe_bot, Polynomial.roots_eq_zero_iff_isRoot_eq_bot, CategoryTheory.ObjectProperty.isCodetecting_bot_of_isGroupoid, LinearGrowth.linearGrowthSup_bot, sSupHom.coe_bot, SimpleGraph.singletonSubgraph_adj, CategoryTheory.ObjectProperty.isDetecting_bot_of_isGroupoid, Pairwise.disjoint_extend_bot, limsup_eq_bot, AlgebraicGeometry.Scheme.IdealSheafData.ideal_bot, Directed.extend_bot, Irreducible.isRoot_eq_bot_of_natDegree_ne_one, Sym2.fromRel_bot_iff, bot_comp, bot_apply, CategoryTheory.isSeparating_empty_of_thin, BotHom.coe_bot, Set.pairwise_bot_iff, Ideal.Filtration.bot_N, MeasureTheory.upperCrossingTime_zero, isAtom_iff_eq_single, Filter.coprodα΅’_eq_bot_iff, Filter.coprodα΅’_bot', Sym2.fromRel_bot, CategoryTheory.ObjectProperty.isSeparating_bot_of_isThin, bot_def, Filter.coprodα΅’_eq_bot_iff', eq_bot_iff, Polynomial.roots_eq_zero_iff_eq_zero_or_isRoot_eq_bot, SupBotHom.coe_bot, CategoryTheory.isDetecting_empty_of_groupoid, InfHom.coe_bot, CategoryTheory.ObjectProperty.isCoseparating_bot_of_isThin, iSup_extend_bot, CompleteLattice.Ο‰ScottContinuous.bot, isAtom_single
instBoundedOrder πŸ“–CompOp
1 mathmath: isCompl_iff
instOrderBot πŸ“–CompOp
12 mathmath: ContinuousAt.finset_sup, Continuous.finset_sup, Filter.Tendsto.finset_sup_nhds, ContinuousWithinAt.finset_sup, isAtom_iff_eq_single, isAtom_iff, ContinuousOn.finset_sup, isAtomistic, Finset.sup_apply, disjoint_iff, isAtomic, isAtom_single
instOrderTop πŸ“–CompOp
9 mathmath: isCoatomistic, ContinuousAt.finset_inf, ContinuousOn.finset_inf, Finset.inf_apply, ContinuousWithinAt.finset_inf, codisjoint_iff, isCoatomic, Continuous.finset_inf, Filter.Tendsto.finset_inf_nhds
instTopForall πŸ“–CompOp
48 mathmath: LinearGrowth.linearGrowthSup_top, CategoryTheory.ObjectProperty.topEquivalence_counitIso, TopHom.coe_top, Sym2.fromRel_top, CategoryTheory.Functor.isLeftAdjoint_iff_rightAdjointObjIsDefined_eq_top, SimpleGraph.preconnected_iff_reachable_eq_top, liminf_eq_top, LinearGrowth.linearGrowthInf_top, CategoryTheory.ObjectProperty.topEquivalence_unitIso, Setoid.top_def, Ideal.Filtration.top_N, Matrix.toBlock_mul_eq_mul, SupHom.coe_top, Setoid.mk_eq_top, CategoryTheory.ObjectProperty.instIsSerreClassTop, CategoryTheory.ObjectProperty.instIsClosedUnderExtensionsTop, top_def, CategoryTheory.ObjectProperty.IsCardinalFilteredGenerator.essentiallyLarge_top, CategoryTheory.ObjectProperty.instContainsZeroTopOfHasZeroObject, Quot.subsingleton_iff, CategoryTheory.exists_equivalence_iff_of_locallySmall, CategoryTheory.ObjectProperty.instEssentiallySmallTopOfEssentiallySmall, AlgebraicGeometry.Scheme.IdealSheafData.ideal_top, top_apply, CategoryTheory.ObjectProperty.ΞΉ_map_top, CategoryTheory.ObjectProperty.IsLocal.top, CategoryTheory.ObjectProperty.instIsClosedUnderQuotientsTop, sInfHom.coe_top, MeasureTheory.OuterMeasure.boundedBy_top, iInf_extend_top, InfTopHom.coe_top, top_comp, CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsTop, CategoryTheory.IsCardinalFilteredGenerator.of_isDense, ExpGrowth.expGrowthSup_top, CategoryTheory.Functor.isRightAdjoint_iff_leftAdjointObjIsDefined_eq_top, CompleteLattice.Ο‰ScottContinuous.top, ExpGrowth.expGrowthInf_top, Nucleus.coe_top, RingCon.coe_top, MeasureTheory.extend_top, PresheafOfModules.pullbackObjIsDefined_eq_top, CategoryTheory.ObjectProperty.instIsClosedUnderSubobjectsTop, Set.pairwise_top, CategoryTheory.ObjectProperty.topEquivalence_inverse, CategoryTheory.ObjectProperty.topEquivalence_functor, Sym2.fromRel_top_iff, InfHom.coe_top

Theorems

NameKindAssumesProvesValidatesDepends On
bot_apply πŸ“–mathematicalβ€”Bot.bot
instBotForall
β€”β€”
bot_comp πŸ“–mathematicalβ€”Bot.bot
instBotForall
β€”β€”
bot_def πŸ“–mathematicalβ€”Bot.bot
instBotForall
β€”β€”
top_apply πŸ“–mathematicalβ€”Top.top
instTopForall
β€”β€”
top_comp πŸ“–mathematicalβ€”Top.top
instTopForall
β€”β€”
top_def πŸ“–mathematicalβ€”Top.top
instTopForall
β€”β€”

Prod

Definitions

NameCategoryTheorems
instBot πŸ“–CompOp
2 mathmath: snd_bot, fst_bot
instBoundedOrder πŸ“–CompOp
2 mathmath: IncidenceAlgebra.eulerChar_prod, isCompl_iff
instOrderBot πŸ“–CompOp
2 mathmath: Finset.sup_prodMap, disjoint_iff
instOrderTop πŸ“–CompOp
2 mathmath: Finset.inf_prodMap, codisjoint_iff
instTop πŸ“–CompOp
2 mathmath: snd_top, fst_top

Theorems

NameKindAssumesProvesValidatesDepends On
fst_bot πŸ“–mathematicalβ€”Bot.bot
instBot
β€”β€”
fst_top πŸ“–mathematicalβ€”Top.top
instTop
β€”β€”
snd_bot πŸ“–mathematicalβ€”Bot.bot
instBot
β€”β€”
snd_top πŸ“–mathematicalβ€”Top.top
instTop
β€”β€”

Subtype

Definitions

NameCategoryTheorems
boundedOrder πŸ“–CompOp
2 mathmath: BoundedLatticeHom.subtypeVal_coe, BoundedLatticeHom.subtypeVal_apply
orderBot πŸ“–CompOp
3 mathmath: Finset.sup_coe, SupBotHom.subtypeVal_coe, SupBotHom.subtypeVal_apply
orderTop πŸ“–CompOp
3 mathmath: InfTopHom.subtypeVal_coe, Finset.inf_coe, InfTopHom.subtypeVal_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_bot πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
β€”β€”mk_bot
coe_eq_bot_iff πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
β€”β€”coe_bot
coe_eq_top_iff πŸ“–β€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
β€”β€”coe_top
coe_top πŸ“–β€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
β€”β€”mk_top
mk_bot πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
β€”β€”le_bot_iff
coe_le_coe
bot_le
mk_eq_bot_iff πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
β€”β€”coe_eq_bot_iff
mk_eq_top_iff πŸ“–β€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
β€”β€”coe_eq_top_iff
mk_top πŸ“–β€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
β€”β€”top_le_iff
coe_le_coe
le_top

ULift

Definitions

NameCategoryTheorems
instBot πŸ“–CompOp
2 mathmath: down_bot, up_bot
instBoundedOrder πŸ“–CompOpβ€”
instOrderBot πŸ“–CompOpβ€”
instOrderTop πŸ“–CompOpβ€”
instTop πŸ“–CompOp
2 mathmath: down_top, up_top

Theorems

NameKindAssumesProvesValidatesDepends On
down_bot πŸ“–mathematicalβ€”Bot.bot
instBot
β€”β€”
down_top πŸ“–mathematicalβ€”Top.top
instTop
β€”β€”
up_bot πŸ“–mathematicalβ€”Bot.bot
instBot
β€”β€”
up_top πŸ“–mathematicalβ€”Top.top
instTop
β€”β€”

(root)

Definitions

NameCategoryTheorems
BoundedOrder πŸ“–CompData
1 mathmath: BoundedOrder.instSubsingleton
OrderBot πŸ“–CompData
1 mathmath: OrderBot.instSubsingleton
OrderTop πŸ“–CompData
1 mathmath: OrderTop.instSubsingleton
botOrderOrNoBotOrder πŸ“–CompOpβ€”
topOrderOrNoTopOrder πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_eq_false πŸ“–bridging (complete)β€”Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
Bool.instBoundedOrder
Bot.botβ€”
bot_le πŸ“–mathematicalβ€”Bot.bot
OrderBot.toBot
β€”OrderBot.bot_le
bot_lt_iff_ne_bot πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
β€”LE.le.lt_iff_ne'
bot_le
bot_lt_of_lt πŸ“–mathematicalPreorder.toLTBot.bot
OrderBot.toBot
Preorder.toLE
β€”lt_of_lt_of_le'
bot_le
bot_lt_top πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
BoundedOrder.toOrderBot
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”lt_top_iff_ne_top
bot_ne_top
bot_ne_top πŸ“–β€”β€”β€”β€”not_subsingleton
subsingleton_of_bot_eq_top
bot_notMem_iff πŸ“–mathematicalβ€”Set
Set.instMembership
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLT
β€”Ne.bot_lt
LT.lt.false
bot_unique πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
β€”β€”LE.le.antisymm'
bot_le
dite_ne_bot πŸ“–β€”β€”β€”β€”β€”
dite_ne_top πŸ“–β€”β€”β€”β€”β€”
eq_bot_iff πŸ“–mathematicalβ€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
β€”le_bot_iff
eq_bot_mono πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
β€”β€”bot_unique
eq_bot_of_bot_eq_top πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
BoundedOrder.toOrderBot
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”β€”eq_bot_mono
le_top
eq_bot_of_minimal πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
β€”eq_bot_or_bot_lt
eq_bot_of_top_eq_bot πŸ“–β€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
BoundedOrder.toOrderTop
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”β€”eq_bot_mono
le_top
eq_bot_or_bot_lt πŸ“–mathematicalβ€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLT
β€”LE.le.eq_or_lt'
bot_le
eq_top_iff πŸ“–mathematicalβ€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
β€”top_le_iff
eq_top_mono πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
Top.top
OrderTop.toTop
β€”β€”top_unique
eq_top_of_bot_eq_top πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
BoundedOrder.toOrderBot
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”β€”eq_top_mono
bot_le
eq_top_of_top_eq_bot πŸ“–β€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
BoundedOrder.toOrderTop
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”β€”eq_top_mono
bot_le
eq_top_or_lt_top πŸ“–mathematicalβ€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLT
β€”LE.le.eq_or_lt
le_top
isBot_bot πŸ“–mathematicalβ€”IsBot
Bot.bot
OrderBot.toBot
β€”bot_le
isBot_iff_eq_bot πŸ“–mathematicalβ€”IsBot
Preorder.toLE
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
β€”IsMin.eq_of_ge
IsBot.isMin
bot_le
isMax_iff_eq_top πŸ“–mathematicalβ€”IsMax
Preorder.toLE
PartialOrder.toPreorder
Top.top
OrderTop.toTop
β€”IsMax.eq_of_le
le_top
isMax_top πŸ“–mathematicalβ€”IsMax
Preorder.toLE
Top.top
OrderTop.toTop
β€”IsTop.isMax
isTop_top
isMin_bot πŸ“–mathematicalβ€”IsMin
Preorder.toLE
Bot.bot
OrderBot.toBot
β€”IsBot.isMin
isBot_bot
isMin_iff_eq_bot πŸ“–mathematicalβ€”IsMin
Preorder.toLE
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
β€”IsMin.eq_of_ge
bot_le
isTop_iff_eq_top πŸ“–mathematicalβ€”IsTop
Preorder.toLE
PartialOrder.toPreorder
Top.top
OrderTop.toTop
β€”IsMax.eq_of_le
IsTop.isMax
le_top
isTop_top πŸ“–mathematicalβ€”IsTop
Top.top
OrderTop.toTop
β€”le_top
ite_ne_bot πŸ“–β€”β€”β€”β€”dite_ne_bot
ite_ne_top πŸ“–β€”β€”β€”β€”dite_ne_top
le_bot_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
β€”LE.le.ge_iff_eq'
bot_le
le_top πŸ“–mathematicalβ€”Top.top
OrderTop.toTop
β€”OrderTop.le_top
lt_top_iff_ne_top πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
Top.top
OrderTop.toTop
Preorder.toLE
β€”LE.le.lt_iff_ne
le_top
lt_top_of_lt πŸ“–mathematicalPreorder.toLTTop.top
OrderTop.toTop
Preorder.toLE
β€”lt_of_lt_of_le
le_top
ne_bot_of_gt πŸ“–β€”Preorder.toLTβ€”β€”LT.lt.ne'
LT.lt.trans_le'
bot_le
ne_bot_of_le_ne_bot πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
β€”β€”LT.lt.ne'
LE.le.trans_lt'
Ne.bot_lt
ne_top_of_le_ne_top πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
β€”β€”LT.lt.ne
LE.le.trans_lt
Ne.lt_top
ne_top_of_lt πŸ“–β€”Preorder.toLTβ€”β€”LT.lt.ne
LT.lt.trans_le
le_top
not_bot_lt_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
β€”Iff.not_left
bot_lt_iff_ne_bot
not_isBot_iff_ne_bot πŸ“–mathematicalβ€”IsBot
Preorder.toLE
PartialOrder.toPreorder
β€”Iff.not
isBot_iff_eq_bot
not_isMax_bot πŸ“–mathematicalβ€”IsMax
Preorder.toLE
PartialOrder.toPreorder
Bot.bot
OrderBot.toBot
β€”exists_ne
le_bot_iff
bot_le
not_isMax_iff_ne_top πŸ“–mathematicalβ€”IsMax
Preorder.toLE
PartialOrder.toPreorder
β€”Iff.not
isMax_iff_eq_top
not_isMin_iff_ne_bot πŸ“–mathematicalβ€”IsMin
Preorder.toLE
PartialOrder.toPreorder
β€”Iff.not
isMin_iff_eq_bot
not_isMin_top πŸ“–mathematicalβ€”IsMin
Preorder.toLE
PartialOrder.toPreorder
Top.top
OrderTop.toTop
β€”exists_ne
top_le_iff
le_top
not_isTop_iff_ne_top πŸ“–mathematicalβ€”IsTop
Preorder.toLE
PartialOrder.toPreorder
β€”Iff.not
isTop_iff_eq_top
not_lt_bot πŸ“–mathematicalβ€”Preorder.toLT
Bot.bot
OrderBot.toBot
Preorder.toLE
β€”IsMin.not_lt
isMin_bot
not_lt_top_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
Top.top
OrderTop.toTop
Preorder.toLE
β€”Iff.not_left
lt_top_iff_ne_top
not_top_lt πŸ“–mathematicalβ€”Preorder.toLT
Top.top
OrderTop.toTop
Preorder.toLE
β€”IsMax.not_lt
isMax_top
subsingleton_iff_bot_eq_top πŸ“–mathematicalβ€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
BoundedOrder.toOrderBot
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”subsingleton_of_bot_eq_top
subsingleton_iff_top_eq_bot πŸ“–mathematicalβ€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
BoundedOrder.toOrderTop
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”subsingleton_of_top_eq_bot
subsingleton_of_bot_eq_top πŸ“–β€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
BoundedOrder.toOrderBot
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”β€”subsingleton_of_top_le_bot
ge_of_eq
subsingleton_of_top_eq_bot πŸ“–β€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
BoundedOrder.toOrderTop
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”β€”subsingleton_of_top_le_bot
le_of_eq
subsingleton_of_top_le_bot πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”β€”le_antisymm
le_trans
le_top
bot_le
top_eq_true πŸ“–bridging (complete)β€”Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
Bool.instBoundedOrder
Top.topβ€”
top_le_iff πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
Top.top
OrderTop.toTop
β€”LE.le.ge_iff_eq
le_top
top_ne_bot πŸ“–β€”β€”β€”β€”not_subsingleton
subsingleton_of_top_eq_bot
top_notMem_iff πŸ“–mathematicalβ€”Set
Set.instMembership
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
Preorder.toLT
β€”Ne.lt_top
LT.lt.false
top_unique πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
Top.top
OrderTop.toTop
β€”β€”LE.le.antisymm
le_top

---

← Back to Index