Documentation Verification Report

Lattice

πŸ“ Source: Mathlib/Order/BoundedOrder/Lattice.lean

Statistics

MetricCount
Definitions0
Theoremsinduction_top, induction_bot, bot_inf_eq, bot_sup_eq, inf_bot_eq, inf_eq_top_iff, inf_top_eq, max_bot_left, max_bot_right, max_eq_bot, max_eq_top, max_ne_top, max_top_left, max_top_right, min_bot_left, min_bot_right, min_eq_bot, min_eq_top, min_ne_bot, min_top_left, min_top_right, sup_bot_eq, sup_eq_bot_iff, sup_top_eq, top_inf_eq, top_sup_eq
26
Total26

WellFoundedGT

Theorems

NameKindAssumesProvesValidatesDepends On
induction_top πŸ“–mathematicalPreorder.toLTTop.top
OrderTop.toTop
Preorder.toLE
β€”Mathlib.Tactic.Contrapose.contrapose₁
induction

WellFoundedLT

Theorems

NameKindAssumesProvesValidatesDepends On
induction_bot πŸ“–mathematicalPreorder.toLTBot.bot
OrderBot.toBot
Preorder.toLE
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_exists
induction

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
bot_inf_eq πŸ“–mathematicalβ€”SemilatticeInf.toMin
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
β€”inf_of_le_left
bot_le
bot_sup_eq πŸ“–mathematicalβ€”SemilatticeSup.toMax
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”sup_of_le_right
bot_le
inf_bot_eq πŸ“–mathematicalβ€”SemilatticeInf.toMin
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
β€”inf_of_le_right
bot_le
inf_eq_top_iff πŸ“–mathematicalβ€”SemilatticeInf.toMin
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
β€”eq_top_iff
le_inf_iff
top_le_iff
inf_top_eq πŸ“–mathematicalβ€”SemilatticeInf.toMin
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
β€”inf_of_le_left
le_top
max_bot_left πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”bot_sup_eq
max_bot_right πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”sup_bot_eq
max_eq_bot πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”sup_eq_bot_iff
max_eq_top πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”top_le_iff
le_sup_iff
max_ne_top πŸ“–β€”β€”β€”β€”β€”
max_top_left πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”top_sup_eq
max_top_right πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”sup_top_eq
min_bot_left πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
β€”bot_inf_eq
min_bot_right πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
β€”inf_bot_eq
min_eq_bot πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
β€”β€”
min_eq_top πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
β€”inf_eq_top_iff
min_ne_bot πŸ“–β€”β€”β€”β€”β€”
min_top_left πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
β€”top_inf_eq
min_top_right πŸ“–mathematicalβ€”SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
β€”inf_top_eq
sup_bot_eq πŸ“–mathematicalβ€”SemilatticeSup.toMax
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”sup_of_le_left
bot_le
sup_eq_bot_iff πŸ“–mathematicalβ€”SemilatticeSup.toMax
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”eq_bot_iff
sup_le_iff
sup_top_eq πŸ“–mathematicalβ€”SemilatticeSup.toMax
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”sup_of_le_right
le_top
top_inf_eq πŸ“–mathematicalβ€”SemilatticeInf.toMin
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
β€”inf_of_le_right
le_top
top_sup_eq πŸ“–mathematicalβ€”SemilatticeSup.toMax
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”sup_of_le_left
le_top

---

← Back to Index