Documentation Verification Report

BddLat

πŸ“ Source: Mathlib/Order/Category/BddLat.lean

Statistics

MetricCount
DefinitionsBddLat, hom, hom, hom', mk, dual, dualEquiv, hasForgetToBddOrd, hasForgetToLat, hasForgetToSemilatInf, hasForgetToSemilatSup, instCoeSortType, instConcreteCategoryBoundedLatticeHomCarrier, instInhabited, instLargeCategory, isBoundedOrder, of, ofHom, toLat, latToBddLat, latToBddLatCompDualIsoDualCompLatToBddLat, latToBddLatForgetAdjunction
22
Theoremsext, ext_iff, mk_hom, mk_inv, coe_forget_to_bddOrd, coe_forget_to_lat, coe_forget_to_semilatInf, coe_forget_to_semilatSup, coe_of, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_lat_partOrd_eq_forget_bddOrd_partOrd, forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, hom_comp, hom_ext, hom_ext_iff, hom_id, id_apply, bddLat_dual_comp_forget_to_bddOrd, bddLat_dual_comp_forget_to_lat, bddLat_dual_comp_forget_to_semilatInfCat, bddLat_dual_comp_forget_to_semilatSupCat
27
Total49

BddLat

Definitions

NameCategoryTheorems
dual πŸ“–CompOp
8 mathmath: bddLat_dual_comp_forget_to_lat, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, bddLat_dual_comp_forget_to_bddOrd, completeLat_dual_comp_forget_to_bddLat, dualEquiv_inverse, dual_map, dualEquiv_functor
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_inverse, dualEquiv_functor
hasForgetToBddOrd πŸ“–CompOp
5 mathmath: forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddLat_dual_comp_forget_to_bddOrd, forget_lat_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_bddOrd
hasForgetToLat πŸ“–CompOp
4 mathmath: bddLat_dual_comp_forget_to_lat, forget_lat_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat
hasForgetToSemilatInf πŸ“–CompOp
4 mathmath: forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, coe_forget_to_semilatInf
hasForgetToSemilatSup πŸ“–CompOp
4 mathmath: forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, coe_forget_to_semilatSup
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryBoundedLatticeHomCarrier πŸ“–CompOp
14 mathmath: bddLat_dual_comp_forget_to_lat, forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, bddLat_dual_comp_forget_to_bddOrd, forget_lat_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, completeLat_dual_comp_forget_to_bddLat, coe_forget_to_semilatSup, coe_forget_to_bddOrd, coe_forget_to_semilatInf, ext_iff
instInhabited πŸ“–CompOpβ€”
instLargeCategory πŸ“–CompOp
19 mathmath: bddLat_dual_comp_forget_to_lat, forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, bddLat_dual_comp_forget_to_bddOrd, forget_lat_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, coe_forget_to_semilatSup, dualEquiv_inverse, coe_forget_to_bddOrd, coe_forget_to_semilatInf, ext_iff, dual_map, dualEquiv_functor, Iso.mk_inv
isBoundedOrder πŸ“–CompOp
17 mathmath: bddLat_dual_comp_forget_to_lat, forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, bddLat_dual_comp_forget_to_bddOrd, forget_lat_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, coe_forget_to_semilatSup, coe_forget_to_bddOrd, coe_forget_to_semilatInf, ext_iff, dual_map, Iso.mk_inv
of πŸ“–CompOp
1 mathmath: coe_of
ofHom πŸ“–CompOp
3 mathmath: Iso.mk_hom, dual_map, Iso.mk_inv
toLat πŸ“–CompOp
17 mathmath: bddLat_dual_comp_forget_to_lat, forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, BddDistLat.coe_toBddLat, forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, coe_of, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, bddLat_dual_comp_forget_to_bddOrd, forget_lat_partOrd_eq_forget_bddOrd_partOrd, coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, completeLat_dual_comp_forget_to_bddLat, coe_forget_to_semilatSup, coe_forget_to_bddOrd, coe_forget_to_semilatInf, ext_iff, dual_map

Theorems

NameKindAssumesProvesValidatesDepends On
coe_forget_to_bddOrd πŸ“–mathematicalβ€”PartOrd.carrier
BddOrd.toPartOrd
CategoryTheory.Functor.obj
BddLat
instLargeCategory
BddOrd
BddOrd.instCategory
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
toLat
Lat.str
isBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
BoundedOrderHom
PartialOrder.toPreorder
PartOrd.str
BddOrd.isBoundedOrder
BoundedOrderHom.instFunLike
BddOrd.instConcreteCategoryBoundedOrderHomCarrier
hasForgetToBddOrd
β€”β€”
coe_forget_to_lat πŸ“–mathematicalβ€”Lat.carrier
CategoryTheory.Functor.obj
BddLat
instLargeCategory
Lat
Lat.instCategory
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
toLat
Lat.str
isBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
LatticeHom
LatticeHom.instFunLike
Lat.instConcreteCategoryLatticeHomCarrier
hasForgetToLat
β€”β€”
coe_forget_to_semilatInf πŸ“–mathematicalβ€”SemilatInfCat.X
CategoryTheory.Functor.obj
BddLat
instLargeCategory
SemilatInfCat
SemilatInfCat.instLargeCategory
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
toLat
Lat.str
isBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
InfTopHom
SemilatticeInf.toMin
SemilatInfCat.isSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatInfCat.isOrderTop
InfTopHom.instFunLike
SemilatInfCat.instConcreteCategoryInfTopHomX
hasForgetToSemilatInf
β€”β€”
coe_forget_to_semilatSup πŸ“–mathematicalβ€”SemilatSupCat.X
CategoryTheory.Functor.obj
BddLat
instLargeCategory
SemilatSupCat
SemilatSupCat.instLargeCategory
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
toLat
Lat.str
isBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
SupBotHom
SemilatticeSup.toMax
SemilatSupCat.isSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatSupCat.isOrderBot
SupBotHom.instFunLike
SemilatSupCat.instConcreteCategorySupBotHomX
hasForgetToSemilatSup
β€”β€”
coe_of πŸ“–mathematicalβ€”Lat.carrier
toLat
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
Lat.carrier
CategoryTheory.ConcreteCategory.hom
Lat
Lat.instCategory
LatticeHom
Lat.str
LatticeHom.instFunLike
Lat.instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
BddLat
instLargeCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
BddLat
instLargeCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
BddLat
instLargeCategory
dual
ofHom
OrderDual
Lat.carrier
toLat
OrderDual.instLattice
Lat.str
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
isBoundedOrder
DFunLike.coe
Equiv
BoundedLatticeHom
EquivLike.toFunLike
Equiv.instEquivLike
BoundedLatticeHom.dual
Hom.hom
β€”β€”
ext πŸ“–β€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddLat
instLargeCategory
BoundedLatticeHom
Lat.carrier
toLat
Lat.str
isBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
BddLat
instLargeCategory
BoundedLatticeHom
Lat.carrier
toLat
Lat.str
isBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
β€”ext
forget_lat_partOrd_eq_forget_bddOrd_partOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
BddLat
instLargeCategory
Lat
Lat.instCategory
PartOrd
PartOrd.instCategory
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
toLat
Lat.str
isBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
LatticeHom
LatticeHom.instFunLike
Lat.instConcreteCategoryLatticeHomCarrier
hasForgetToLat
OrderHom
PartOrd.carrier
PartialOrder.toPreorder
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
Lat.hasForgetToPartOrd
BddOrd
BddOrd.instCategory
BoundedOrderHom
BddOrd.toPartOrd
BddOrd.isBoundedOrder
BoundedOrderHom.instFunLike
BddOrd.instConcreteCategoryBoundedOrderHomCarrier
hasForgetToBddOrd
BddOrd.hasForgetToPartOrd
β€”β€”
forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
BddLat
instLargeCategory
SemilatInfCat
SemilatInfCat.instLargeCategory
PartOrd
PartOrd.instCategory
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
toLat
Lat.str
isBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
InfTopHom
SemilatInfCat.X
SemilatticeInf.toMin
SemilatInfCat.isSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatInfCat.isOrderTop
InfTopHom.instFunLike
SemilatInfCat.instConcreteCategoryInfTopHomX
hasForgetToSemilatInf
OrderHom
PartOrd.carrier
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
SemilatInfCat.hasForgetToPartOrd
BddOrd
BddOrd.instCategory
BoundedOrderHom
BddOrd.toPartOrd
BddOrd.isBoundedOrder
BoundedOrderHom.instFunLike
BddOrd.instConcreteCategoryBoundedOrderHomCarrier
hasForgetToBddOrd
BddOrd.hasForgetToPartOrd
β€”β€”
forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
BddLat
instLargeCategory
SemilatSupCat
SemilatSupCat.instLargeCategory
PartOrd
PartOrd.instCategory
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
toLat
Lat.str
isBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
SupBotHom
SemilatSupCat.X
SemilatticeSup.toMax
SemilatSupCat.isSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatSupCat.isOrderBot
SupBotHom.instFunLike
SemilatSupCat.instConcreteCategorySupBotHomX
hasForgetToSemilatSup
OrderHom
PartOrd.carrier
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
SemilatSupCat.hasForgetToPartOrd
BddOrd
BddOrd.instCategory
BoundedOrderHom
BddOrd.toPartOrd
BddOrd.isBoundedOrder
BoundedOrderHom.instFunLike
BddOrd.instConcreteCategoryBoundedOrderHomCarrier
hasForgetToBddOrd
BddOrd.hasForgetToPartOrd
β€”β€”
hom_comp πŸ“–mathematicalβ€”Lat.Hom.hom
CategoryTheory.CategoryStruct.comp
Lat
CategoryTheory.Category.toCategoryStruct
Lat.instCategory
LatticeHom.comp
Lat.carrier
Lat.str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Lat.Hom.hom
CategoryTheory.CategoryStruct.id
Lat
CategoryTheory.Category.toCategoryStruct
Lat.instCategory
LatticeHom.id
Lat.carrier
Lat.str
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
Lat.carrier
CategoryTheory.ConcreteCategory.hom
Lat
Lat.instCategory
LatticeHom
Lat.str
LatticeHom.instFunLike
Lat.instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”

BddLat.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
2 mathmath: BddLat.hom_ext_iff, BddLat.dual_map
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

BddLat.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

BddLat.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
BddLat
BddLat.instLargeCategory
BddLat.ofHom
Lat.carrier
Lat.str
BddLat.isBoundedOrder
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
BddLat
BddLat.instLargeCategory
BddLat.ofHom
Lat.carrier
Lat.str
BddLat.isBoundedOrder
β€”β€”

(root)

Definitions

NameCategoryTheorems
BddLat πŸ“–CompData
19 mathmath: bddLat_dual_comp_forget_to_lat, BddLat.forget_semilatSup_partOrd_eq_forget_bddOrd_partOrd, BddLat.forget_semilatInf_partOrd_eq_forget_bddOrd_partOrd, bddLat_dual_comp_forget_to_semilatSupCat, bddLat_dual_comp_forget_to_semilatInfCat, bddLat_dual_comp_forget_to_bddOrd, BddLat.forget_lat_partOrd_eq_forget_bddOrd_partOrd, BddLat.coe_forget_to_lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, BddLat.Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, BddLat.coe_forget_to_semilatSup, BddLat.dualEquiv_inverse, BddLat.coe_forget_to_bddOrd, BddLat.coe_forget_to_semilatInf, BddLat.ext_iff, BddLat.dual_map, BddLat.dualEquiv_functor, BddLat.Iso.mk_inv
latToBddLat πŸ“–CompOpβ€”
latToBddLatCompDualIsoDualCompLatToBddLat πŸ“–CompOpβ€”
latToBddLatForgetAdjunction πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bddLat_dual_comp_forget_to_bddOrd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
BddLat
BddLat.instLargeCategory
BddOrd
BddOrd.instCategory
BddLat.dual
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
BddLat.toLat
Lat.str
BddLat.isBoundedOrder
BoundedLatticeHom.instFunLike
BddLat.instConcreteCategoryBoundedLatticeHomCarrier
BoundedOrderHom
PartOrd.carrier
BddOrd.toPartOrd
PartialOrder.toPreorder
PartOrd.str
BddOrd.isBoundedOrder
BoundedOrderHom.instFunLike
BddOrd.instConcreteCategoryBoundedOrderHomCarrier
BddLat.hasForgetToBddOrd
BddOrd.dual
β€”β€”
bddLat_dual_comp_forget_to_lat πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
BddLat
BddLat.instLargeCategory
Lat
Lat.instCategory
BddLat.dual
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
BddLat.toLat
Lat.str
BddLat.isBoundedOrder
BoundedLatticeHom.instFunLike
BddLat.instConcreteCategoryBoundedLatticeHomCarrier
LatticeHom
LatticeHom.instFunLike
Lat.instConcreteCategoryLatticeHomCarrier
BddLat.hasForgetToLat
Lat.dual
β€”β€”
bddLat_dual_comp_forget_to_semilatInfCat πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
BddLat
BddLat.instLargeCategory
SemilatInfCat
SemilatInfCat.instLargeCategory
BddLat.dual
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
BddLat.toLat
Lat.str
BddLat.isBoundedOrder
BoundedLatticeHom.instFunLike
BddLat.instConcreteCategoryBoundedLatticeHomCarrier
InfTopHom
SemilatInfCat.X
SemilatticeInf.toMin
SemilatInfCat.isSemilatticeInf
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SemilatInfCat.isOrderTop
InfTopHom.instFunLike
SemilatInfCat.instConcreteCategoryInfTopHomX
BddLat.hasForgetToSemilatInf
SemilatSupCat
SemilatSupCat.instLargeCategory
SupBotHom
SemilatSupCat.X
SemilatticeSup.toMax
SemilatSupCat.isSemilatticeSup
OrderBot.toBot
SemilatticeSup.toPartialOrder
SemilatSupCat.isOrderBot
SupBotHom.instFunLike
SemilatSupCat.instConcreteCategorySupBotHomX
BddLat.hasForgetToSemilatSup
SemilatSupCat.dual
β€”β€”
bddLat_dual_comp_forget_to_semilatSupCat πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
BddLat
BddLat.instLargeCategory
SemilatSupCat
SemilatSupCat.instLargeCategory
BddLat.dual
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
Lat.carrier
BddLat.toLat
Lat.str
BddLat.isBoundedOrder
BoundedLatticeHom.instFunLike
BddLat.instConcreteCategoryBoundedLatticeHomCarrier
SupBotHom
SemilatSupCat.X
SemilatticeSup.toMax
SemilatSupCat.isSemilatticeSup
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SemilatSupCat.isOrderBot
SupBotHom.instFunLike
SemilatSupCat.instConcreteCategorySupBotHomX
BddLat.hasForgetToSemilatSup
SemilatInfCat
SemilatInfCat.instLargeCategory
InfTopHom
SemilatInfCat.X
SemilatticeInf.toMin
SemilatInfCat.isSemilatticeInf
OrderTop.toTop
SemilatticeInf.toPartialOrder
SemilatInfCat.isOrderTop
InfTopHom.instFunLike
SemilatInfCat.instConcreteCategoryInfTopHomX
BddLat.hasForgetToSemilatInf
SemilatInfCat.dual
β€”β€”

---

← Back to Index