Documentation Verification Report

BoolAlg

šŸ“ Source: Mathlib/Order/Category/BoolAlg.lean

Statistics

MetricCount
DefinitionsBoolAlg, hom, hom, hom', mk, carrier, dual, dualEquiv, hasForgetToBddDistLat, hasForgetToHeytAlg, instCategory, instCoeSortType, instConcreteCategoryBoundedLatticeHomCarrier, instInhabited, ofHom, str, toBddDistLat, typeToBoolAlgOp
18
Theoremsext, ext_iff, mk_hom, mk_inv, coe_comp, coe_id, coe_of, coe_toBddDistLat, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_map, hasForgetToHeytAlg_forgetā‚‚_map, hasForgetToHeytAlg_forgetā‚‚_obj_coe, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, boolAlg_dual_comp_forget_to_bddDistLat, typeToBoolAlgOp_map, typeToBoolAlgOp_obj
32
Total50

BoolAlg

Definitions

NameCategoryTheorems
carrier šŸ“–CompOp
38 mathmath: coe_id, BoolRing.hasForgetToBoolAlg_forgetā‚‚_obj_coe, hasForgetToBoolRing_forgetā‚‚_obj_carrier, ext_iff, hasForgetToBoolRing_forgetā‚‚_map, boolRingCatEquivBoolAlg_functor, coe_toBddDistLat, hom_id, hasForgetToHeytAlg_forgetā‚‚_map, FinBoolAlg.coe_of, FinBoolAlg.forgetToFinPartOrdFaithful, coe_of, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_obj_carrier, hom_comp, dual_map, boolRingCatEquivBoolAlg_inverse, coe_comp, BoolRing.hasForgetToBoolAlg_forgetā‚‚_map, hom_inv_apply, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_obj_isFintype, FinBoolAlg.Iso.mk_inv, comp_apply, ofHom_hom, finBoolAlg_dual_comp_forget_to_finBddDistLat, Iso.mk_hom, hasForgetToHeytAlg_forgetā‚‚_obj_coe, inv_hom_apply, boolAlg_dual_comp_forget_to_bddDistLat, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_map, FinBoolAlg.forgetToBoolAlg_full, FinBoolAlg.Iso.mk_hom, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_obj_str, FinBoolAlg.dual_map, id_apply, FinBoolAlg.forgetToBoolAlgFaithful, Iso.mk_inv, ofHom_apply, forget_map
dual šŸ“–CompOp
4 mathmath: dualEquiv_functor, dual_map, dualEquiv_inverse, boolAlg_dual_comp_forget_to_bddDistLat
dualEquiv šŸ“–CompOp
2 mathmath: dualEquiv_functor, dualEquiv_inverse
hasForgetToBddDistLat šŸ“–CompOp
1 mathmath: boolAlg_dual_comp_forget_to_bddDistLat
hasForgetToHeytAlg šŸ“–CompOp
2 mathmath: hasForgetToHeytAlg_forgetā‚‚_map, hasForgetToHeytAlg_forgetā‚‚_obj_coe
instCategory šŸ“–CompOp
36 mathmath: coe_id, BoolRing.hasForgetToBoolAlg_forgetā‚‚_obj_coe, hasForgetToBoolRing_forgetā‚‚_obj_carrier, ext_iff, dualEquiv_functor, hasForgetToBoolRing_forgetā‚‚_map, boolRingCatEquivBoolAlg_functor, ofHom_comp, hom_id, hasForgetToHeytAlg_forgetā‚‚_map, fintypeToFinBoolAlgOp_map, typeToBoolAlgOp_map, hom_comp, ofHom_id, dual_map, dualEquiv_inverse, boolRingCatEquivBoolAlg_inverse, coe_comp, BoolRing.hasForgetToBoolAlg_forgetā‚‚_map, hom_inv_apply, FinBoolAlg.Iso.mk_inv, comp_apply, Iso.mk_hom, hasForgetToHeytAlg_forgetā‚‚_obj_coe, inv_hom_apply, boolAlg_dual_comp_forget_to_bddDistLat, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_map, FinBoolAlg.forgetToBoolAlg_full, FinBoolAlg.Iso.mk_hom, FinBoolAlg.dual_map, id_apply, FinBoolAlg.forgetToBoolAlgFaithful, Iso.mk_inv, ofHom_apply, forget_map, typeToBoolAlgOp_obj
instCoeSortType šŸ“–CompOp—
instConcreteCategoryBoundedLatticeHomCarrier šŸ“–CompOp
20 mathmath: coe_id, BoolRing.hasForgetToBoolAlg_forgetā‚‚_obj_coe, hasForgetToBoolRing_forgetā‚‚_obj_carrier, ext_iff, hasForgetToBoolRing_forgetā‚‚_map, boolRingCatEquivBoolAlg_functor, hasForgetToHeytAlg_forgetā‚‚_map, boolRingCatEquivBoolAlg_inverse, coe_comp, BoolRing.hasForgetToBoolAlg_forgetā‚‚_map, hom_inv_apply, comp_apply, hasForgetToHeytAlg_forgetā‚‚_obj_coe, inv_hom_apply, boolAlg_dual_comp_forget_to_bddDistLat, FinBoolAlg.forgetToBoolAlg_full, id_apply, FinBoolAlg.forgetToBoolAlgFaithful, ofHom_apply, forget_map
instInhabited šŸ“–CompOp—
ofHom šŸ“–CompOp
14 mathmath: ofHom_comp, fintypeToFinBoolAlgOp_map, typeToBoolAlgOp_map, ofHom_id, dual_map, BoolRing.hasForgetToBoolAlg_forgetā‚‚_map, hom_ofHom, FinBoolAlg.Iso.mk_inv, ofHom_hom, Iso.mk_hom, FinBoolAlg.Iso.mk_hom, FinBoolAlg.dual_map, Iso.mk_inv, ofHom_apply
str šŸ“–CompOp
35 mathmath: coe_id, BoolRing.hasForgetToBoolAlg_forgetā‚‚_obj_coe, hasForgetToBoolRing_forgetā‚‚_obj_carrier, ext_iff, hasForgetToBoolRing_forgetā‚‚_map, boolRingCatEquivBoolAlg_functor, hom_id, hasForgetToHeytAlg_forgetā‚‚_map, FinBoolAlg.forgetToFinPartOrdFaithful, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_obj_carrier, hom_comp, dual_map, boolRingCatEquivBoolAlg_inverse, coe_comp, BoolRing.hasForgetToBoolAlg_forgetā‚‚_map, hom_inv_apply, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_obj_isFintype, FinBoolAlg.Iso.mk_inv, comp_apply, ofHom_hom, finBoolAlg_dual_comp_forget_to_finBddDistLat, Iso.mk_hom, hasForgetToHeytAlg_forgetā‚‚_obj_coe, inv_hom_apply, boolAlg_dual_comp_forget_to_bddDistLat, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_map, FinBoolAlg.forgetToBoolAlg_full, FinBoolAlg.Iso.mk_hom, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_obj_str, FinBoolAlg.dual_map, id_apply, FinBoolAlg.forgetToBoolAlgFaithful, Iso.mk_inv, ofHom_apply, forget_map
toBddDistLat šŸ“–CompOp
1 mathmath: coe_toBddDistLat

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
BoolAlg
instCategory
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
coe_id šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
BoolAlg
instCategory
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
coe_of šŸ“–mathematical—carrier
of
——
coe_toBddDistLat šŸ“–mathematical—DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
carrier
——
comp_apply šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
BoolAlg
instCategory
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
dualEquiv_functor šŸ“–mathematical—CategoryTheory.Equivalence.functor
BoolAlg
instCategory
dualEquiv
dual
——
dualEquiv_inverse šŸ“–mathematical—CategoryTheory.Equivalence.inverse
BoolAlg
instCategory
dualEquiv
dual
——
dual_map šŸ“–mathematical—CategoryTheory.Functor.map
BoolAlg
instCategory
dual
ofHom
OrderDual
carrier
OrderDual.instBooleanAlgebra
str
DFunLike.coe
Equiv
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toBoundedOrder
OrderDual.instLattice
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
EquivLike.toFunLike
Equiv.instEquivLike
BoundedLatticeHom.dual
Hom.hom
——
ext šŸ“–ā€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
BoolAlg
instCategory
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
——CategoryTheory.ConcreteCategory.hom_ext
ext_iff šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
BoolAlg
instCategory
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
—ext
forget_map šŸ“–mathematical—CategoryTheory.Functor.map
BoolAlg
instCategory
CategoryTheory.types
CategoryTheory.forget
BoundedLatticeHom
carrier
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
——
hasForgetToHeytAlg_forgetā‚‚_map šŸ“–mathematical—CategoryTheory.Functor.map
BoolAlg
instCategory
HeytAlg
HeytAlg.instCategory
CategoryTheory.HasForgetā‚‚.forgetā‚‚
BoundedLatticeHom
carrier
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
HeytingHom
HeytAlg.carrier
HeytAlg.str
HeytingHom.instFunLike
HeytAlg.instConcreteCategoryHeytingHomCarrier
hasForgetToHeytAlg
HeytAlg.ofHom
BiheytingAlgebra.toHeytingAlgebra
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
Hom.hom
——
hasForgetToHeytAlg_forgetā‚‚_obj_coe šŸ“–mathematical—HeytAlg.carrier
CategoryTheory.Functor.obj
BoolAlg
instCategory
HeytAlg
HeytAlg.instCategory
CategoryTheory.HasForgetā‚‚.forgetā‚‚
BoundedLatticeHom
carrier
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
HeytingHom
HeytAlg.str
HeytingHom.instFunLike
HeytAlg.instConcreteCategoryHeytingHomCarrier
hasForgetToHeytAlg
——
hom_comp šŸ“–mathematical—Hom.hom
CategoryTheory.CategoryStruct.comp
BoolAlg
CategoryTheory.Category.toCategoryStruct
instCategory
BoundedLatticeHom.comp
carrier
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
——
hom_ext šŸ“–ā€”Hom.hom——Hom.ext
hom_ext_iff šŸ“–mathematical—Hom.hom—hom_ext
hom_id šŸ“–mathematical—Hom.hom
CategoryTheory.CategoryStruct.id
BoolAlg
CategoryTheory.Category.toCategoryStruct
instCategory
BoundedLatticeHom.id
carrier
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
——
hom_inv_apply šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
BoolAlg
instCategory
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
—CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom šŸ“–mathematical—Hom.hom
of
ofHom
——
id_apply šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
BoolAlg
instCategory
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
inv_hom_apply šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
BoolAlg
instCategory
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
—CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply šŸ“–mathematical—DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
BoolAlg
instCategory
BoundedLatticeHom
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
ofHom
——
ofHom_comp šŸ“–mathematical—ofHom
BoundedLatticeHom.comp
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toBoundedOrder
CategoryTheory.CategoryStruct.comp
BoolAlg
CategoryTheory.Category.toCategoryStruct
instCategory
of
——
ofHom_hom šŸ“–mathematical—ofHom
carrier
str
Hom.hom
——
ofHom_id šŸ“–mathematical—ofHom
BoundedLatticeHom.id
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toBoundedOrder
CategoryTheory.CategoryStruct.id
BoolAlg
CategoryTheory.Category.toCategoryStruct
instCategory
of
——

BoolAlg.Hom

Definitions

NameCategoryTheorems
hom šŸ“–CompOp
10 mathmath: BoolAlg.hasForgetToBoolRing_forgetā‚‚_map, BoolAlg.hom_id, BoolAlg.hasForgetToHeytAlg_forgetā‚‚_map, BoolAlg.hom_comp, BoolAlg.dual_map, BoolAlg.hom_ofHom, BoolAlg.ofHom_hom, BoolAlg.hom_ext_iff, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_map, FinBoolAlg.dual_map
hom' šŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”hom'———
ext_iff šŸ“–mathematical—hom'—ext

BoolAlg.Hom.Simps

Definitions

NameCategoryTheorems
hom šŸ“–CompOp—

BoolAlg.Iso

Definitions

NameCategoryTheorems
mk šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom šŸ“–mathematical—CategoryTheory.Iso.hom
BoolAlg
BoolAlg.instCategory
BoolAlg.ofHom
BoolAlg.carrier
BoolAlg.str
——
mk_inv šŸ“–mathematical—CategoryTheory.Iso.inv
BoolAlg
BoolAlg.instCategory
BoolAlg.ofHom
BoolAlg.carrier
BoolAlg.str
——

(root)

Definitions

NameCategoryTheorems
BoolAlg šŸ“–CompData
36 mathmath: BoolAlg.coe_id, BoolRing.hasForgetToBoolAlg_forgetā‚‚_obj_coe, BoolAlg.hasForgetToBoolRing_forgetā‚‚_obj_carrier, BoolAlg.ext_iff, BoolAlg.dualEquiv_functor, BoolAlg.hasForgetToBoolRing_forgetā‚‚_map, boolRingCatEquivBoolAlg_functor, BoolAlg.ofHom_comp, BoolAlg.hom_id, BoolAlg.hasForgetToHeytAlg_forgetā‚‚_map, fintypeToFinBoolAlgOp_map, typeToBoolAlgOp_map, BoolAlg.hom_comp, BoolAlg.ofHom_id, BoolAlg.dual_map, BoolAlg.dualEquiv_inverse, boolRingCatEquivBoolAlg_inverse, BoolAlg.coe_comp, BoolRing.hasForgetToBoolAlg_forgetā‚‚_map, BoolAlg.hom_inv_apply, FinBoolAlg.Iso.mk_inv, BoolAlg.comp_apply, BoolAlg.Iso.mk_hom, BoolAlg.hasForgetToHeytAlg_forgetā‚‚_obj_coe, BoolAlg.inv_hom_apply, boolAlg_dual_comp_forget_to_bddDistLat, FinBoolAlg.hasForgetToFinPartOrd_forgetā‚‚_map, FinBoolAlg.forgetToBoolAlg_full, FinBoolAlg.Iso.mk_hom, FinBoolAlg.dual_map, BoolAlg.id_apply, FinBoolAlg.forgetToBoolAlgFaithful, BoolAlg.Iso.mk_inv, BoolAlg.ofHom_apply, BoolAlg.forget_map, typeToBoolAlgOp_obj
typeToBoolAlgOp šŸ“–CompOp
2 mathmath: typeToBoolAlgOp_map, typeToBoolAlgOp_obj

Theorems

NameKindAssumesProvesValidatesDepends On
boolAlg_dual_comp_forget_to_bddDistLat šŸ“–mathematical—CategoryTheory.Functor.comp
BoolAlg
BoolAlg.instCategory
BddDistLat
BddDistLat.instCategory
BoolAlg.dual
CategoryTheory.forgetā‚‚
BoundedLatticeHom
BoolAlg.carrier
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BoolAlg.str
BooleanAlgebra.toBoundedOrder
BoundedLatticeHom.instFunLike
BoolAlg.instConcreteCategoryBoundedLatticeHomCarrier
DistLat.carrier
BddDistLat.toDistLat
DistribLattice.toLattice
BddDistLat.instDistribLatticeCarrier
BddDistLat.isBoundedOrder
BddDistLat.instConcreteCategoryBoundedLatticeHomCarrier
BoolAlg.hasForgetToBddDistLat
BddDistLat.dual
——
typeToBoolAlgOp_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.types
Opposite
BoolAlg
CategoryTheory.Category.opposite
BoolAlg.instCategory
typeToBoolAlgOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
BoolAlg.of
Set
Set.instBooleanAlgebra
BoolAlg.ofHom
——
typeToBoolAlgOp_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.types
Opposite
BoolAlg
CategoryTheory.Category.opposite
BoolAlg.instCategory
typeToBoolAlgOp
Opposite.op
BoolAlg.of
Set
Set.instBooleanAlgebra
——

---

← Back to Index