Documentation Verification Report

CompleteLat

πŸ“ Source: Mathlib/Order/Category/CompleteLat.lean

Statistics

MetricCount
DefinitionsCompleteLat, mk, carrier, dual, dualEquiv, hasForgetToBddLat, instCoeSortType, instConcreteCategoryCompleteLatticeHomCarrier, instInhabited, instLargeCategory, str
11
Theoremsmk_hom, mk_inv, coe_of, dualEquiv_functor, dualEquiv_inverse, dual_map, completeLat_dual_comp_forget_to_bddLat
7
Total18

CompleteLat

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
5 mathmath: coe_of, dual_map, Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, Iso.mk_inv
dual πŸ“–CompOp
4 mathmath: dualEquiv_functor, dual_map, dualEquiv_inverse, completeLat_dual_comp_forget_to_bddLat
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_functor, dualEquiv_inverse
hasForgetToBddLat πŸ“–CompOp
1 mathmath: completeLat_dual_comp_forget_to_bddLat
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryCompleteLatticeHomCarrier πŸ“–CompOp
3 mathmath: Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, Iso.mk_inv
instInhabited πŸ“–CompOpβ€”
instLargeCategory πŸ“–CompOp
6 mathmath: dualEquiv_functor, dual_map, dualEquiv_inverse, Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, Iso.mk_inv
str πŸ“–CompOp
4 mathmath: dual_map, Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, Iso.mk_inv

Theorems

NameKindAssumesProvesValidatesDepends On
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CompleteLat
instLargeCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CompleteLat
instLargeCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CompleteLat
instLargeCategory
dual
DFunLike.coe
Equiv
CompleteLatticeHom
carrier
str
OrderDual
OrderDual.instCompleteLattice
EquivLike.toFunLike
Equiv.instEquivLike
CompleteLatticeHom.dual
β€”β€”

CompleteLat.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CompleteLat
CompleteLat.instLargeCategory
CategoryTheory.ConcreteCategory.ofHom
CompleteLatticeHom
CompleteLat.carrier
CompleteLat.str
CompleteLatticeHom.instFunLike
CompleteLat.instConcreteCategoryCompleteLatticeHomCarrier
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
instFunLikeOrderIso
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CompleteLat
CompleteLat.instLargeCategory
CategoryTheory.ConcreteCategory.ofHom
CompleteLatticeHom
CompleteLat.carrier
CompleteLat.str
CompleteLatticeHom.instFunLike
CompleteLat.instConcreteCategoryCompleteLatticeHomCarrier
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
instFunLikeOrderIso
OrderIso.symm
β€”β€”

(root)

Definitions

NameCategoryTheorems
CompleteLat πŸ“–CompData
6 mathmath: CompleteLat.dualEquiv_functor, CompleteLat.dual_map, CompleteLat.dualEquiv_inverse, CompleteLat.Iso.mk_hom, completeLat_dual_comp_forget_to_bddLat, CompleteLat.Iso.mk_inv

Theorems

NameKindAssumesProvesValidatesDepends On
completeLat_dual_comp_forget_to_bddLat πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
CompleteLat
CompleteLat.instLargeCategory
BddLat
BddLat.instLargeCategory
CompleteLat.dual
CategoryTheory.forgetβ‚‚
CompleteLatticeHom
CompleteLat.carrier
CompleteLat.str
CompleteLatticeHom.instFunLike
CompleteLat.instConcreteCategoryCompleteLatticeHomCarrier
BoundedLatticeHom
Lat.carrier
BddLat.toLat
Lat.str
BddLat.isBoundedOrder
BoundedLatticeHom.instFunLike
BddLat.instConcreteCategoryBoundedLatticeHomCarrier
CompleteLat.hasForgetToBddLat
BddLat.dual
β€”β€”

---

← Back to Index