Documentation Verification Report

DistLat

πŸ“ Source: Mathlib/Order/Category/DistLat.lean

Statistics

MetricCount
DefinitionsDistLat, hom, hom, hom', mk, carrier, dual, dualEquiv, hasForgetToLat, instCategory, instCoeSortType, instConcreteCategoryLatticeHomCarrier, of, ofHom, str
15
Theoremsext, ext_iff, mk_hom, mk_inv, coe_comp, coe_id, coe_of, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, distLat_dual_comp_forget_to_Lat
27
Total42

DistLat

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
59 mathmath: hom_inv_apply, HeytAlg.hasForgetToLat_forgetβ‚‚_map, BddDistLat.ofHom_hom, dual_map, FinBddDistLat.ofHom_apply, BddDistLat.hom_id, BddDistLat.coe_id, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_str, FinBddDistLat.hom_inv_apply, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_carrier, ofHom_hom, FinBddDistLat.ext_iff, BoolAlg.coe_toBddDistLat, ext_iff, Iso.mk_inv, FinBddDistLat.coe_id, FinBddDistLat.inv_hom_apply, hom_id, finBddDistLat_dual_comp_forget_to_bddDistLat, distLat_dual_comp_forget_to_Lat, FinBddDistLat.forget_map, forget_map, BddDistLat.coe_comp, BddDistLat.coe_toBddLat, id_apply, BddDistLat.forget_map, FinBddDistLat.comp_apply, BddDistLat.dual_map, BddDistLat.inv_hom_apply, ofHom_apply, BddDistLat.Iso.mk_hom, BddDistLat.ofHom_apply, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_isBoundedOrder, FinBddDistLat.ofHom_hom, BddDistLat.id_apply, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, finBoolAlg_dual_comp_forget_to_finBddDistLat, FinBddDistLat.hom_comp, coe_of, coe_id, FinBddDistLat.coe_comp, FinBddDistLat.Iso.mk_inv, BddDistLat.coe_of, coe_comp, BddDistLat.ext_iff, Iso.mk_hom, boolAlg_dual_comp_forget_to_bddDistLat, FinBddDistLat.id_apply, BddDistLat.comp_apply, BddDistLat.hom_comp, bddDistLat_dual_comp_forget_to_distLat, comp_apply, FinBddDistLat.hom_id, FinBddDistLat.dual_map, hom_comp, inv_hom_apply, BddDistLat.Iso.mk_inv, FinBddDistLat.Iso.mk_hom, BddDistLat.hom_inv_apply
dual πŸ“–CompOp
5 mathmath: dual_map, distLat_dual_comp_forget_to_Lat, dualEquiv_functor, bddDistLat_dual_comp_forget_to_distLat, dualEquiv_inverse
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_functor, dualEquiv_inverse
hasForgetToLat πŸ“–CompOp
2 mathmath: distLat_dual_comp_forget_to_Lat, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat
instCategory πŸ“–CompOp
21 mathmath: hom_inv_apply, dual_map, ext_iff, Iso.mk_inv, hom_id, distLat_dual_comp_forget_to_Lat, forget_map, dualEquiv_functor, id_apply, ofHom_apply, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, ofHom_id, coe_id, coe_comp, Iso.mk_hom, bddDistLat_dual_comp_forget_to_distLat, comp_apply, hom_comp, inv_hom_apply, dualEquiv_inverse, ofHom_comp
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryLatticeHomCarrier πŸ“–CompOp
12 mathmath: hom_inv_apply, ext_iff, distLat_dual_comp_forget_to_Lat, forget_map, id_apply, ofHom_apply, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, coe_id, coe_comp, bddDistLat_dual_comp_forget_to_distLat, comp_apply, inv_hom_apply
of πŸ“–CompOp
5 mathmath: hom_ofHom, ofHom_apply, coe_of, ofHom_id, ofHom_comp
ofHom πŸ“–CompOp
8 mathmath: dual_map, ofHom_hom, Iso.mk_inv, hom_ofHom, ofHom_apply, ofHom_id, Iso.mk_hom, ofHom_comp
str πŸ“–CompOp
23 mathmath: hom_inv_apply, dual_map, HeytAlg.hasForgetToLat_forgetβ‚‚_obj_str, ofHom_hom, ext_iff, Iso.mk_inv, hom_id, distLat_dual_comp_forget_to_Lat, forget_map, id_apply, ofHom_apply, BddDistLat.Iso.mk_hom, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, coe_id, FinBddDistLat.Iso.mk_inv, coe_comp, Iso.mk_hom, bddDistLat_dual_comp_forget_to_distLat, comp_apply, hom_comp, inv_hom_apply, BddDistLat.Iso.mk_inv, FinBddDistLat.Iso.mk_hom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
DistLat
instCategory
LatticeHom
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
DistLat
instCategory
LatticeHom
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_of πŸ“–mathematicalβ€”carrier
of
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
DistLat
instCategory
LatticeHom
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
DistLat
instCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
DistLat
instCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
DistLat
instCategory
dual
ofHom
OrderDual
carrier
OrderDual.instDistribLattice
str
DFunLike.coe
Equiv
LatticeHom
DistribLattice.toLattice
OrderDual.instLattice
EquivLike.toFunLike
Equiv.instEquivLike
LatticeHom.dual
Hom.hom
β€”β€”
ext πŸ“–β€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
DistLat
instCategory
LatticeHom
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
DistLat
instCategory
LatticeHom
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
β€”ext
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
DistLat
instCategory
CategoryTheory.types
CategoryTheory.forget
LatticeHom
carrier
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
DistLat
CategoryTheory.Category.toCategoryStruct
instCategory
LatticeHom.comp
carrier
DistribLattice.toLattice
str
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
DistLat
CategoryTheory.Category.toCategoryStruct
instCategory
LatticeHom.id
carrier
DistribLattice.toLattice
str
β€”β€”
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
DistLat
instCategory
LatticeHom
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
DistLat
instCategory
LatticeHom
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
DistLat
instCategory
LatticeHom
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
DistLat
instCategory
LatticeHom
DistribLattice.toLattice
str
LatticeHom.instFunLike
instConcreteCategoryLatticeHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
LatticeHom.comp
DistribLattice.toLattice
CategoryTheory.CategoryStruct.comp
DistLat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
carrier
str
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
LatticeHom.id
DistribLattice.toLattice
CategoryTheory.CategoryStruct.id
DistLat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

DistLat.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
6 mathmath: DistLat.dual_map, DistLat.ofHom_hom, DistLat.hom_ext_iff, DistLat.hom_id, DistLat.hom_ofHom, DistLat.hom_comp
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

DistLat.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

DistLat.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
DistLat
DistLat.instCategory
DistLat.ofHom
DistLat.carrier
DistLat.str
DistribLattice.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instFunLikeOrderIso
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
DistLat
DistLat.instCategory
DistLat.ofHom
DistLat.carrier
DistLat.str
DistribLattice.toLattice
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instFunLikeOrderIso
OrderIso.symm
β€”β€”

(root)

Definitions

NameCategoryTheorems
DistLat πŸ“–CompData
21 mathmath: DistLat.hom_inv_apply, DistLat.dual_map, DistLat.ext_iff, DistLat.Iso.mk_inv, DistLat.hom_id, distLat_dual_comp_forget_to_Lat, DistLat.forget_map, DistLat.dualEquiv_functor, DistLat.id_apply, DistLat.ofHom_apply, BddDistLat.forget_bddLat_lat_eq_forget_distLat_lat, DistLat.ofHom_id, DistLat.coe_id, DistLat.coe_comp, DistLat.Iso.mk_hom, bddDistLat_dual_comp_forget_to_distLat, DistLat.comp_apply, DistLat.hom_comp, DistLat.inv_hom_apply, DistLat.dualEquiv_inverse, DistLat.ofHom_comp

Theorems

NameKindAssumesProvesValidatesDepends On
distLat_dual_comp_forget_to_Lat πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
DistLat
DistLat.instCategory
Lat
Lat.instCategory
DistLat.dual
CategoryTheory.forgetβ‚‚
LatticeHom
DistLat.carrier
DistribLattice.toLattice
DistLat.str
LatticeHom.instFunLike
DistLat.instConcreteCategoryLatticeHomCarrier
Lat.carrier
Lat.str
Lat.instConcreteCategoryLatticeHomCarrier
DistLat.hasForgetToLat
Lat.dual
β€”β€”

---

← Back to Index