Documentation Verification Report

FinBddDistLat

πŸ“ Source: Mathlib/Order/Category/FinBddDistLat.lean

Statistics

MetricCount
DefinitionsFinBddDistLat, hom, hom, hom', mk, dual, dualEquiv, hasForgetToBddDistLat, hasForgetToFinPartOrd, instBoundedOrderCarrier, instCategory, instCoeSortType, instConcreteCategoryBoundedLatticeHomCarrier, instDistribLatticeCarrier, instInhabited, isFintype, of, of', ofHom, toBddDistLat
20
Theoremsext, ext_iff, mk_hom, mk_inv, coe_comp, coe_id, comp_apply, dualEquiv_functor, dualEquiv_inverse, dual_map, ext, ext_iff, forget_map, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, finBddDistLat_dual_comp_forget_to_bddDistLat
26
Total46

FinBddDistLat

Definitions

NameCategoryTheorems
dual πŸ“–CompOp
5 mathmath: dualEquiv_functor, finBddDistLat_dual_comp_forget_to_bddDistLat, finBoolAlg_dual_comp_forget_to_finBddDistLat, dual_map, dualEquiv_inverse
dualEquiv πŸ“–CompOp
2 mathmath: dualEquiv_functor, dualEquiv_inverse
hasForgetToBddDistLat πŸ“–CompOp
1 mathmath: finBddDistLat_dual_comp_forget_to_bddDistLat
hasForgetToFinPartOrd πŸ“–CompOpβ€”
instBoundedOrderCarrier πŸ“–CompOp
15 mathmath: ofHom_apply, hom_inv_apply, ext_iff, coe_id, inv_hom_apply, finBddDistLat_dual_comp_forget_to_bddDistLat, forget_map, comp_apply, ofHom_hom, finBoolAlg_dual_comp_forget_to_finBddDistLat, hom_comp, coe_comp, id_apply, hom_id, dual_map
instCategory πŸ“–CompOp
20 mathmath: ofHom_comp, ofHom_apply, dualEquiv_functor, hom_inv_apply, ext_iff, coe_id, inv_hom_apply, finBddDistLat_dual_comp_forget_to_bddDistLat, forget_map, comp_apply, finBoolAlg_dual_comp_forget_to_finBddDistLat, hom_comp, coe_comp, Iso.mk_inv, id_apply, hom_id, dual_map, dualEquiv_inverse, ofHom_id, Iso.mk_hom
instCoeSortType πŸ“–CompOpβ€”
instConcreteCategoryBoundedLatticeHomCarrier πŸ“–CompOp
11 mathmath: ofHom_apply, hom_inv_apply, ext_iff, coe_id, inv_hom_apply, finBddDistLat_dual_comp_forget_to_bddDistLat, forget_map, comp_apply, finBoolAlg_dual_comp_forget_to_finBddDistLat, coe_comp, id_apply
instDistribLatticeCarrier πŸ“–CompOp
15 mathmath: ofHom_apply, hom_inv_apply, ext_iff, coe_id, inv_hom_apply, finBddDistLat_dual_comp_forget_to_bddDistLat, forget_map, comp_apply, ofHom_hom, finBoolAlg_dual_comp_forget_to_finBddDistLat, hom_comp, coe_comp, id_apply, hom_id, dual_map
instInhabited πŸ“–CompOpβ€”
isFintype πŸ“–CompOp
4 mathmath: ofHom_hom, Iso.mk_inv, dual_map, Iso.mk_hom
of πŸ“–CompOp
4 mathmath: ofHom_comp, ofHom_apply, hom_ofHom, ofHom_id
of' πŸ“–CompOpβ€”
ofHom πŸ“–CompOp
8 mathmath: ofHom_comp, ofHom_apply, ofHom_hom, hom_ofHom, Iso.mk_inv, dual_map, ofHom_id, Iso.mk_hom
toBddDistLat πŸ“–CompOp
15 mathmath: ofHom_apply, hom_inv_apply, ext_iff, coe_id, inv_hom_apply, finBddDistLat_dual_comp_forget_to_bddDistLat, forget_map, comp_apply, ofHom_hom, finBoolAlg_dual_comp_forget_to_finBddDistLat, hom_comp, coe_comp, id_apply, hom_id, dual_map

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinBddDistLat
instCategory
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinBddDistLat
instCategory
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinBddDistLat
instCategory
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”β€”
dualEquiv_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
FinBddDistLat
instCategory
dualEquiv
dual
β€”β€”
dualEquiv_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
FinBddDistLat
instCategory
dualEquiv
dual
β€”β€”
dual_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
FinBddDistLat
instCategory
dual
ofHom
OrderDual
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
OrderDual.instDistribLattice
instDistribLatticeCarrier
OrderDual.instBoundedOrder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instBoundedOrderCarrier
OrderDual.fintype
isFintype
DFunLike.coe
Equiv
BoundedLatticeHom
OrderDual.instLattice
EquivLike.toFunLike
Equiv.instEquivLike
BoundedLatticeHom.dual
Hom.hom
β€”β€”
ext πŸ“–β€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinBddDistLat
instCategory
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
β€”β€”CategoryTheory.ConcreteCategory.hom_ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinBddDistLat
instCategory
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
β€”ext
forget_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
FinBddDistLat
instCategory
CategoryTheory.types
CategoryTheory.forget
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
β€”β€”
hom_comp πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.comp
FinBddDistLat
CategoryTheory.Category.toCategoryStruct
instCategory
BoundedLatticeHom.comp
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
β€”β€”
hom_ext πŸ“–β€”Hom.homβ€”β€”Hom.ext
hom_ext_iff πŸ“–mathematicalβ€”Hom.homβ€”hom_ext
hom_id πŸ“–mathematicalβ€”Hom.hom
CategoryTheory.CategoryStruct.id
FinBddDistLat
CategoryTheory.Category.toCategoryStruct
instCategory
BoundedLatticeHom.id
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
β€”β€”
hom_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinBddDistLat
instCategory
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
β€”CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom πŸ“–mathematicalβ€”Hom.hom
of
ofHom
β€”β€”
id_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinBddDistLat
instCategory
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inv_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.ConcreteCategory.hom
FinBddDistLat
instCategory
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
β€”CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply πŸ“–mathematicalβ€”DFunLike.coe
of
CategoryTheory.ConcreteCategory.hom
FinBddDistLat
instCategory
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
DistribLattice.toLattice
instDistribLatticeCarrier
instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
instConcreteCategoryBoundedLatticeHomCarrier
ofHom
β€”β€”
ofHom_comp πŸ“–mathematicalβ€”ofHom
BoundedLatticeHom.comp
DistribLattice.toLattice
CategoryTheory.CategoryStruct.comp
FinBddDistLat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
ofHom_hom πŸ“–mathematicalβ€”ofHom
DistLat.carrier
BddDistLat.toDistLat
toBddDistLat
instDistribLatticeCarrier
instBoundedOrderCarrier
isFintype
Hom.hom
β€”β€”
ofHom_id πŸ“–mathematicalβ€”ofHom
BoundedLatticeHom.id
DistribLattice.toLattice
CategoryTheory.CategoryStruct.id
FinBddDistLat
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”

FinBddDistLat.Hom

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
6 mathmath: FinBddDistLat.hom_ext_iff, FinBddDistLat.ofHom_hom, FinBddDistLat.hom_comp, FinBddDistLat.hom_ofHom, FinBddDistLat.hom_id, FinBddDistLat.dual_map
hom' πŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”hom'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”hom'β€”ext

FinBddDistLat.Hom.Simps

Definitions

NameCategoryTheorems
hom πŸ“–CompOpβ€”

FinBddDistLat.Iso

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
mk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
FinBddDistLat
FinBddDistLat.instCategory
FinBddDistLat.ofHom
DistLat.carrier
DistLat.str
BddDistLat.isBoundedOrder
FinBddDistLat.isFintype
β€”β€”
mk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
FinBddDistLat
FinBddDistLat.instCategory
FinBddDistLat.ofHom
DistLat.carrier
DistLat.str
BddDistLat.isBoundedOrder
FinBddDistLat.isFintype
β€”β€”

(root)

Definitions

NameCategoryTheorems
FinBddDistLat πŸ“–CompData
20 mathmath: FinBddDistLat.ofHom_comp, FinBddDistLat.ofHom_apply, FinBddDistLat.dualEquiv_functor, FinBddDistLat.hom_inv_apply, FinBddDistLat.ext_iff, FinBddDistLat.coe_id, FinBddDistLat.inv_hom_apply, finBddDistLat_dual_comp_forget_to_bddDistLat, FinBddDistLat.forget_map, FinBddDistLat.comp_apply, finBoolAlg_dual_comp_forget_to_finBddDistLat, FinBddDistLat.hom_comp, FinBddDistLat.coe_comp, FinBddDistLat.Iso.mk_inv, FinBddDistLat.id_apply, FinBddDistLat.hom_id, FinBddDistLat.dual_map, FinBddDistLat.dualEquiv_inverse, FinBddDistLat.ofHom_id, FinBddDistLat.Iso.mk_hom

Theorems

NameKindAssumesProvesValidatesDepends On
finBddDistLat_dual_comp_forget_to_bddDistLat πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
FinBddDistLat
FinBddDistLat.instCategory
BddDistLat
BddDistLat.instCategory
FinBddDistLat.dual
CategoryTheory.forgetβ‚‚
BoundedLatticeHom
DistLat.carrier
BddDistLat.toDistLat
FinBddDistLat.toBddDistLat
DistribLattice.toLattice
FinBddDistLat.instDistribLatticeCarrier
FinBddDistLat.instBoundedOrderCarrier
BoundedLatticeHom.instFunLike
FinBddDistLat.instConcreteCategoryBoundedLatticeHomCarrier
BddDistLat.instDistribLatticeCarrier
BddDistLat.isBoundedOrder
BddDistLat.instConcreteCategoryBoundedLatticeHomCarrier
FinBddDistLat.hasForgetToBddDistLat
BddDistLat.dual
β€”β€”

---

← Back to Index